论文标题

G $^3 $ SR:全球图指导会话的建议

G$^3$SR: Global Graph Guided Session-based Recommendation

论文作者

Deng, Zhi-Hong, Wang, Chang-Dong, Huang, Ling, Lai, Jian-Huang, Yu, Philip S.

论文摘要

基于会话的建议试图利用匿名会话数据,以在用户计划和目标用户的完整历史行为数据的条件下提供高质量的建议。以前的工作单独考虑每个会话,并尝试在会话中捕获用户兴趣。尽管结果令人鼓舞,但这些模型只能感知会议内项目,并且无法借鉴大量的历史关系信息。为了解决这个问题,我们提出了一种名为G $^3 $ SR的新颖方法(基于全球图指导的建议建议)。 G $^3 $ SR将基于会话的建议工作流分为两个步骤。首先,在所有会话数据上构建了全局图,以无监督的方式从中从中学习了全局项目表示。然后,这些表示形式在图形网络下的会话图上进行了完善,并使用读取函数来生成每个会话的会话表示。在两个实际基准数据集上进行的广泛实验表明,G $^$^3 $ SR方法对最新方法的显着改善,尤其是对于冷点。

Session-based recommendation tries to make use of anonymous session data to deliver high-quality recommendation under the condition that user-profiles and the complete historical behavioral data of a target user are unavailable. Previous works consider each session individually and try to capture user interests within a session. Despite their encouraging results, these models can only perceive intra-session items and cannot draw upon the massive historical relational information. To solve this problem, we propose a novel method named G$^3$SR (Global Graph Guided Session-based Recommendation). G$^3$SR decomposes the session-based recommendation workflow into two steps. First, a global graph is built upon all session data, from which the global item representations are learned in an unsupervised manner. Then, these representations are refined on session graphs under the graph networks, and a readout function is used to generate session representations for each session. Extensive experiments on two real-world benchmark datasets show remarkable and consistent improvements of the G$^3$SR method over the state-of-the-art methods, especially for cold items.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源