论文标题

将注意力和嵌入非结构化视图与主题相关的超声报告生成的分类

Factored Attention and Embedding for Unstructured-view Topic-related Ultrasound Report Generation

论文作者

Chen, Fuhai, Ji, Rongrong, Dai, Chengpeng, Ge, Xuri, Zhang, Shengchuang, Ma, Xiaojing, Gao, Yue

论文摘要

超声心动图被广泛用于临床实践进行诊断和治疗,例如在常见的先天性心脏缺陷上。由于员工短缺,工作量过多和经验较少,传统的手动操作容易出错,这导致了自动化计算机辅助报告系统的紧急要求,以减轻超声学家的工作量,并帮助他们进行决策。尽管最近在自动医学报告生成中进行了一些成功的尝试,但它们仍被困在超声报告的一代中,其中涉及非结构化视图图像和与主题相关的描述。为此,我们调查了与主题相关的超声报告生成的任务,并提出了一种新的分类的注意力和嵌入模型(称为fae-gen)。拟议的FAE-gen主要由两个模块组成,即观察引导的注意力和以主题为导向的嵌入嵌入,其中1)捕获跨不同观点的同质和异构形态学特征,以及2)2)用不同的弦乐模式产生描述,以及不同的强调内容的不同典型的典型内容。实验评估是对要发行的大规模临床心血管超声数据集(CardultData)进行的。定量比较和定性分析都证明了fae-gen在七个常用指标上的有效性和优势。

Echocardiography is widely used to clinical practice for diagnosis and treatment, e.g., on the common congenital heart defects. The traditional manual manipulation is error-prone due to the staff shortage, excess workload, and less experience, leading to the urgent requirement of an automated computer-aided reporting system to lighten the workload of ultrasonologists considerably and assist them in decision making. Despite some recent successful attempts in automatical medical report generation, they are trapped in the ultrasound report generation, which involves unstructured-view images and topic-related descriptions. To this end, we investigate the task of the unstructured-view topic-related ultrasound report generation, and propose a novel factored attention and embedding model (termed FAE-Gen). The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which 1) capture the homogeneous and heterogeneous morphological characteristic across different views, and 2) generate the descriptions with different syntactic patterns and different emphatic contents for different topics. Experimental evaluations are conducted on a to-be-released large-scale clinical cardiovascular ultrasound dataset (CardUltData). Both quantitative comparisons and qualitative analysis demonstrate the effectiveness and the superiority of FAE-Gen over seven commonly-used metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源