论文标题
hochschild还原$ p $ - 亚种集团
Hochschild homology of reductive $p$-adic groups
论文作者
论文摘要
考虑一个还原的$ p $ - 亚种$ g $,其(复杂值)Hecke代数$ h(g)$和Harish-Chandra--Schwartz代数$ S(G)$。我们计算$ h(g)$和$ s(g)$的Hochschild同源性小组,我们以多种方式描述了结果。 我们的主要工具是代数为$ g $的代数家庭。我们将构建从$ hh_n(h(g))$和$ hh_n(s(g))$构建的地图到仿射品种的微分$ n $ forms的模块。对于$ n = 0 $,这提供了对这些代数的cocentres的描述,该代数在有限长度的Grothendieck组上的好线性功能(pervered)$ g $ - 表述。 从较早的工作中知道,每个伯恩斯坦理想的$ h(g)$ h(g)$ $与$ o(t)\ rtimes w $的交叉产品代数密切相关。这里$ o(t)$表示Levi子组$ l $ $ g $的多样性$ t $ t $的常规功能,而$ w $是在$ t $上作用的有限群体。我们通过在$ hh_*(h(g)^s)$和$ hh_*(o(t)\ rtimes w)$之间建立同构的同构来使这种关系变得更加牢固,尽管我们必须说,在某些情况下,有必要由2个cocycle扭动$ c [w] $。 同样,我们证明了$ s(g)$的双面理想$ s(g)^s $的Hochschild同源性是$ HH_**(c^\ infty(t_u)\ rtimes w)$的同构,其中$ t_u $表示$ l $的单位不合格字符。在这些$ hh_*(h(g))$和$ hh_*(s(g))$的图片中,我们还展示了$ h(g)$ ACTS的伯恩斯坦中心。 最后,我们为$ h(g)$和$ s(g)$的(周期性)周期性同源组提供了类似的表达方式,我们将其与拓扑K理论联系起来。
Consider a reductive $p$-adic group $G$, its (complex-valued) Hecke algebra $H(G)$ and the Harish-Chandra--Schwartz algebra $S(G)$. We compute the Hochschild homology groups of $H(G)$ and of $S(G)$, and we describe the outcomes in several ways. Our main tools are algebraic families of smooth $G$-representations. With those we construct maps from $HH_n (H(G))$ and $HH_n (S(G))$ to modules of differential $n$-forms on affine varieties. For $n = 0$ this provides a description of the cocentres of these algebras in terms of nice linear functions on the Grothendieck group of finite length (tempered) $G$-representations. It is known from earlier work that every Bernstein ideal $H(G)^s$ of $H(G)$ is closely related to a crossed product algebra of the from $O(T) \rtimes W$. Here $O(T)$ denotes the regular functions on the variety $T$ of unramified characters of a Levi subgroup $L$ of $G$, and $W$ is a finite group acting on $T$. We make this relation even stronger by establishing an isomorphism between $HH_* (H(G)^s)$ and $HH_* (O(T) \rtimes W)$, although we have to say that in some cases it is necessary to twist $C[W]$ by a 2-cocycle. Similarly we prove that the Hochschild homology of the two-sided ideal $S(G)^s$ of $S(G)$ is isomorphic to $HH_* (C^\infty (T_u) \rtimes W)$, where $T_u$ denotes the Lie group of unitary unramified characters of $L$. In these pictures of $HH_* (H(G))$ and $HH_* (S(G))$ we also show how the Bernstein centre of $H(G)$ acts. Finally, we derive similar expressions for the (periodic) cyclic homology groups of $H(G)$ and of $S(G)$ and we relate that to topological K-theory.