论文标题
DATR:用于多域地标检测的域自动变压器
DATR: Domain-adaptive transformer for multi-domain landmark detection
论文作者
论文摘要
准确的解剖学地标检测在医学图像分析中起着越来越重要的作用。尽管现有方法达到了令人满意的性能,但它们主要基于CNN,并专门用于与特定解剖区域相关的单个域。在这项工作中,我们通过利用变压器来建模较长的依赖性并开发一个域自适应变压器模型(称为DATR),为多域地标检测提出了一个通用模型,该模型在不同解剖学的多个混合数据集中训练,并能够从这些解剖学中检测任何图像的地标。提出的DATR展示了三个主要特征:(i)这是第一个引入变压器作为多解剖地标检测的编码器的通用模型; (ii)我们为解剖学的地标检测设计了一个域自适应变压器,可以有效地扩展到任何其他变压器网络; (iii)在先前的研究之后,我们采用了一个轻加权的指导网络,该网络鼓励变压器网络检测更准确的地标。我们对三个广泛使用的X射线数据集进行了实验,以进行地标检测,这些数据集总共有1,588张图像和62个地标,其中包括三种不同的解剖(头部,手和胸部)。实验结果表明,我们提出的DATR通过大多数指标实现最先进的表现,并且行为比以前的任何基于卷积的模型要好得多。该代码将公开发布。
Accurate anatomical landmark detection plays an increasingly vital role in medical image analysis. Although existing methods achieve satisfying performance, they are mostly based on CNN and specialized for a single domain say associated with a particular anatomical region. In this work, we propose a universal model for multi-domain landmark detection by taking advantage of transformer for modeling long dependencies and develop a domain-adaptive transformer model, named as DATR, which is trained on multiple mixed datasets from different anatomies and capable of detecting landmarks of any image from those anatomies. The proposed DATR exhibits three primary features: (i) It is the first universal model which introduces transformer as an encoder for multi-anatomy landmark detection; (ii) We design a domain-adaptive transformer for anatomy-aware landmark detection, which can be effectively extended to any other transformer network; (iii) Following previous studies, we employ a light-weighted guidance network, which encourages the transformer network to detect more accurate landmarks. We carry out experiments on three widely used X-ray datasets for landmark detection, which have 1,588 images and 62 landmarks in total, including three different anatomies (head, hand, and chest). Experimental results demonstrate that our proposed DATR achieves state-of-the-art performances by most metrics and behaves much better than any previous convolution-based models. The code will be released publicly.