论文标题
Sigma:域自适应对象检测的语义完整图匹配
SIGMA: Semantic-complete Graph Matching for Domain Adaptive Object Detection
论文作者
论文摘要
域自适应对象检测(DAOD)利用标记的域来学习对物体探测器的推广到没有注释的新型域。最近的进步通过缩小跨域原型(类中心)来使班级条件分布保持一致。尽管取得了巨大的成功,但他们忽略了培训批次内的重要阶段差异和域匹配的语义不匹配的语义,从而导致了次优的适应。为了克服这些挑战,我们为DAOD提出了一个新颖的语义完整图匹配(Sigma)框架,该框架完成了不匹配的语义并通过图形匹配来重新适应适应。具体而言,我们设计了一个图形包裹的语义完成模块(GSC),该模块通过在缺失类别中生成幻觉图节点来完成错配语义。然后,我们建立了跨图像图来模拟类别条件分布,并学习图形引导的内存库,以便依次进行更好的语义完成。将源和目标数据表示为图形之后,我们将适应性重新定义为图形匹配问题,即在跨图中找到良好的节点对以减少域间隙,以减少域间隙,该域用新颖的双分式图形匹配贴贴(BGM)求解。简而言之,我们利用图节点来建立语义感知节点亲和力,并利用图形边缘作为结构感知的匹配损失的二次约束,并使用节点对节点匹配来实现细粒度的适应性。广泛的实验验证了Sigma的表现明显优于现有的作用。我们的代码可在https://github.com/cityu-aim-group/sigma上找到。
Domain Adaptive Object Detection (DAOD) leverages a labeled domain to learn an object detector generalizing to a novel domain free of annotations. Recent advances align class-conditional distributions by narrowing down cross-domain prototypes (class centers). Though great success,they ignore the significant within-class variance and the domain-mismatched semantics within the training batch, leading to a sub-optimal adaptation. To overcome these challenges, we propose a novel SemantIc-complete Graph MAtching (SIGMA) framework for DAOD, which completes mismatched semantics and reformulates the adaptation with graph matching. Specifically, we design a Graph-embedded Semantic Completion module (GSC) that completes mismatched semantics through generating hallucination graph nodes in missing categories. Then, we establish cross-image graphs to model class-conditional distributions and learn a graph-guided memory bank for better semantic completion in turn. After representing the source and target data as graphs, we reformulate the adaptation as a graph matching problem, i.e., finding well-matched node pairs across graphs to reduce the domain gap, which is solved with a novel Bipartite Graph Matching adaptor (BGM). In a nutshell, we utilize graph nodes to establish semantic-aware node affinity and leverage graph edges as quadratic constraints in a structure-aware matching loss, achieving fine-grained adaptation with a node-to-node graph matching. Extensive experiments verify that SIGMA outperforms existing works significantly. Our code is available at https://github.com/CityU-AIM-Group/SIGMA.