论文标题
张量放射素学:用于系统掺入多流量放射线特征的范例
Tensor Radiomics: Paradigm for Systematic Incorporation of Multi-Flavoured Radiomics Features
论文作者
论文摘要
放射素学特征是从医学图像中提取定量信息,探讨了生物标志物的临床任务,例如诊断,预后或治疗反应评估。不同的图像离散参数(例如bin数量或大小),卷积过滤器,分割扰动或多模式融合级别可用于生成放射线特征和最终签名。通常,仅使用一组参数。给定的RF仅导致一个值或风味。我们提出了张量放射学(TR),其中使用多种参数组合(即口味)计算出的特征张量来优化放射线学特征的构建。我们介绍了应用于PET/CT,MRI和CT成像的TR的示例,调用机器学习或深度学习解决方案,以及可重复性分析:(1)通过在肺癌和PET-CT图像上通过不同的bin尺寸和头颈癌(HNC)的PET-CT图像(HNC)进行整体生存预测的TR。与常规的还原功能相比,一种被称为TR-NET的混合深神经网络以及两种基于ML的风味融合方法的精度提高了。 (2)使用CT图像对一线免疫疗法的晚期肺癌反应分类,该TR由不同的分割扰动和不同的bin尺寸构建。 TR改进了预测的患者反应。 (3)MR成像中通过多流动性生成的放射线学特征TR与许多单打特征相比,可重现性提高。 (4)通过HNC中的多个PET/CT融合。风味是由使用方法(例如拉普拉斯金字塔和小波变换)建立的。 TR改善了总体生存预测。我们的结果表明,拟议的TR范式有可能提高不同医学成像任务中的性能能力。
Radiomics features extract quantitative information from medical images, towards the derivation of biomarkers for clinical tasks, such as diagnosis, prognosis, or treatment response assessment. Different image discretization parameters (e.g. bin number or size), convolutional filters, segmentation perturbation, or multi-modality fusion levels can be used to generate radiomics features and ultimately signatures. Commonly, only one set of parameters is used; resulting in only one value or flavour for a given RF. We propose tensor radiomics (TR) where tensors of features calculated with multiple combinations of parameters (i.e. flavours) are utilized to optimize the construction of radiomics signatures. We present examples of TR as applied to PET/CT, MRI, and CT imaging invoking machine learning or deep learning solutions, and reproducibility analyses: (1) TR via varying bin sizes on CT images of lung cancer and PET-CT images of head & neck cancer (HNC) for overall survival prediction. A hybrid deep neural network, referred to as TR-Net, along with two ML-based flavour fusion methods showed improved accuracy compared to regular rediomics features. (2) TR built from different segmentation perturbations and different bin sizes for classification of late-stage lung cancer response to first-line immunotherapy using CT images. TR improved predicted patient responses. (3) TR via multi-flavour generated radiomics features in MR imaging showed improved reproducibility when compared to many single-flavour features. (4) TR via multiple PET/CT fusions in HNC. Flavours were built from different fusions using methods, such as Laplacian pyramids and wavelet transforms. TR improved overall survival prediction. Our results suggest that the proposed TR paradigm has the potential to improve performance capabilities in different medical imaging tasks.