论文标题
在拉格朗日家庭的亚伯-Jacobi地图上
On Abel-Jacobi Maps of Lagrangian Families
论文作者
论文摘要
我们在本文中研究了拉格朗日家庭对投射超卡勒歧管的共同体学特性。首先,我们给出了消失的拉格朗日家庭亚伯 - 雅各比的标准。使用此标准,我们表明,在自然条件下,如果hodge结构在拉格朗日家族的纤维中的$ 1 $共同体学上的变化是最大的,那么它的Abel-Jacobi地图是微不足道的。我们还在广义的Kummer品种上构建了Lagrangian家族,其亚伯 - 雅各比(Abel-Jacobi)图并非微不足道,这表明我们的标准是最佳的。
We study in this article the cohomological properties of Lagrangian families on projective hyper-Kähler manifolds. First, we give a criterion for the vanishing of Abel-Jacobi maps of Lagrangian families. Using this criterion, we show that under a natural condition, if the variation of Hodge structures on the degree $1$ cohomomology of the fibers of the Lagrangian family is maximal, its Abel-Jacobi map is trivial. We also construct Lagrangian families on generalized Kummer varieties whose Abel-Jacobi map is not trivial, showing that our criterion is optimal.