论文标题

学习心脏激活图从12铅ECG具有多余的贝叶斯优化对流形的贝叶斯

Learning cardiac activation maps from 12-lead ECG with multi-fidelity Bayesian optimization on manifolds

论文作者

Pezzuto, Simone, Perdikaris, Paris, Costabal, Francisco Sahli

论文摘要

我们提出了一种非侵入性心脏异位激活的方法。心脏的异位活动会引发致命的心律不齐。因此,异位焦点或最早激活位点(EASS)的定位是心脏病专家决定最佳治疗方法的关键信息。在这项工作中,我们将识别问题作为一个全局优化问题提出,通过最大程度地减少心脏模型预测的ECG之间的不匹配,当时在给定的EAS处和异位活动期间观察到的ECG。我们的心脏模型在求解躯干中的心脏激活和正向bidomain模型的各向异性二元方程的量中,并使用用于计算ECG的铅磁场方法。我们在心脏表面上构建了损失函数的高斯过程替代模型,以执行贝叶斯优化。在此过程中,我们在较低的置信度结合标准之后迭代评估损失函数,该标准结合了探索表面与最小区域的开发。我们还扩展了此框架以结合模型的多个层次。我们表明,仅在$ 11.7 \ pm10.4 $迭代(20个独立运行)和单余地案例和$ 3.5 \ pm1.7 $迭代案的$ 11.7 \ pm10.4 $迭代(20独立运行)之后,我们的过程仅收敛到最低。我们设想该工具可以在临床环境中实时应用,以识别潜在危险的EAS。

We propose a method for identifying an ectopic activation in the heart non-invasively. Ectopic activity in the heart can trigger deadly arrhythmias. The localization of the ectopic foci or earliest activation sites (EASs) is therefore a critical information for cardiologists in deciding the optimal treatment. In this work, we formulate the identification problem as a global optimization problem, by minimizing the mismatch between the ECG predicted by a cardiac model, when paced at a given EAS, and the observed ECG during the ectopic activity. Our cardiac model amounts at solving an anisotropic eikonal equation for cardiac activation and the forward bidomain model in the torso with the lead field approach for computing the ECG. We build a Gaussian process surrogate model of the loss function on the heart surface to perform Bayesian optimization. In this procedure, we iteratively evaluate the loss function following the lower confidence bound criterion, which combines exploring the surface with exploitation of the minimum region. We also extend this framework to incorporate multiple levels of fidelity of the model. We show that our procedure converges to the minimum only after $11.7\pm10.4$ iterations (20 independent runs) for the single-fidelity case and $3.5\pm1.7$ iterations for the multi-fidelity case. We envision that this tool could be applied in real time in a clinical setting to identify potentially dangerous EASs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源