论文标题
预测设置适应未知的协变量移位
Prediction Sets Adaptive to Unknown Covariate Shift
论文作者
论文摘要
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实际上是一个普遍的问题),却带来了严重的未解决的挑战。在本文中,我们表明,具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建具有未知协方差转移下的渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确的},对大样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验中实现了名义覆盖范围以及有关HIV风险预测的数据集。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
Predicting sets of outcomes -- instead of unique outcomes -- is a promising solution to uncertainty quantification in statistical learning. Despite a rich literature on constructing prediction sets with statistical guarantees, adapting to unknown covariate shift -- a prevalent issue in practice -- poses a serious unsolved challenge. In this paper, we show that prediction sets with finite-sample coverage guarantee are uninformative and propose a novel flexible distribution-free method, PredSet-1Step, to efficiently construct prediction sets with an asymptotic coverage guarantee under unknown covariate shift. We formally show that our method is \textit{asymptotically probably approximately correct}, having well-calibrated coverage error with high confidence for large samples. We illustrate that it achieves nominal coverage in a number of experiments and a data set concerning HIV risk prediction in a South African cohort study. Our theory hinges on a new bound for the convergence rate of the coverage of Wald confidence intervals based on general asymptotically linear estimators.