论文标题

使用增强学习的光子神经形态处理器的设备系统共同设计

Device-system Co-design of Photonic Neuromorphic Processor using Reinforcement Learning

论文作者

Tang, Yingheng, Zamani, Princess Tara, Chen, Ruiyang, Ma, Jianzhu, Qi, Minghao, Yu, Cunxi, Gao, Weilu

论文摘要

将高性能光电设备掺入光子神经形态处理器中可以大大加速机器学习(ML)算法的计算密集型操作。但是,传统的设备设计智慧通过系统优化断开连接。我们报告了一种设备系统的共同设计方法,以优化自由空间的通用矩阵乘法(GEMM)硬件加速器,该方法通过工程设计了由Chalcogenide相变材料制成的空间可重构阵列。借助基于实验信息构建的高度平行的硬件模拟器,我们通过通过增强学习来优化GEMM计算精度,包括深Q学习神经网络,贝叶斯优化及其级联方法,证明了单元设备的设计,这表明了系统性能衡量和物理设备设备之间的明显相关性。此外,我们采用物理感知的培训方法将优化的硬件部署到图像分类,材料发现和光学ML加速器的闭环设计中。演示的框架提供了对光电设备和系统的共同设计的见解,这些设备和系统具有减少的人类统计和域知识障碍。

The incorporation of high-performance optoelectronic devices into photonic neuromorphic processors can substantially accelerate computationally intensive operations in machine learning (ML) algorithms. However, the conventional device design wisdom is disconnected with system optimization. We report a device-system co-design methodology to optimize a free-space optical general matrix multiplication (GEMM) hardware accelerator by engineering a spatially reconfigurable array made from chalcogenide phase change materials. With a highly-parallelized hardware emulator constructed based on experimental information, we demonstrate the design of unit device by optimizing GEMM calculation accuracy via reinforcement learning, including deep Q-learning neural network, Bayesian optimization, and their cascaded approach, which show a clear correlation between system performance metrics and physical device specifications. Furthermore, we employ physics-aware training approaches to deploy optimized hardware to the tasks of image classification, materials discovery, and a closed-loop design of optical ML accelerators. The demonstrated framework offers insights into the co-design of optoelectronic devices and systems with reduced human-supervision and domain-knowledge barriers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源