论文标题

物理学意识到的复合物值对抗机器在可重新配置的衍射全光神经网络中

Physics-aware Complex-valued Adversarial Machine Learning in Reconfigurable Diffractive All-optical Neural Network

论文作者

Chen, Ruiyang, Li, Yingjie, Lou, Minhan, Fan, Jichao, Tang, Yingheng, Sensale-Rodriguez, Berardi, Yu, Cunxi, Gao, Weilu

论文摘要

衍射光学神经网络已显示出比电子电路加速现代机器学习(ML)算法的有希望的优势。但是,实现完全可编程的全光实现和快速硬件部署是一项挑战。此外,在这种系统中了解对抗性ML的威胁对于现实世界应用至关重要,而现实世界中的应用程序仍未得到探索。在这里,我们基于层压的透气扭曲的列明液晶体空间光调节剂,在可见范围内展示了一个大规模,成本效益,复杂值和可重新配置的衍射全光神经网络系统。在分类重新聚集化的协助下,我们创建了一个物理感知的培训框架,以将计算机训练的模型快速,准确地部署到光学硬件上。此外,我们理论上分析并在实验上证明了对系统的物理感知攻击,这些攻击是由基于复杂的基于梯度的算法生成的。详细的对抗性鲁棒性与常规多层感知和卷积神经网络的比较具有衍射光学神经网络中不同统计的对抗性。我们完整的软件和硬件堆栈为在各种ML任务中采用衍射光学功能提供了新的机会,并实现了有关光学对手ML的研究。

Diffractive optical neural networks have shown promising advantages over electronic circuits for accelerating modern machine learning (ML) algorithms. However, it is challenging to achieve fully programmable all-optical implementation and rapid hardware deployment. Furthermore, understanding the threat of adversarial ML in such system becomes crucial for real-world applications, which remains unexplored. Here, we demonstrate a large-scale, cost-effective, complex-valued, and reconfigurable diffractive all-optical neural networks system in the visible range based on cascaded transmissive twisted nematic liquid crystal spatial light modulators. With the assist of categorical reparameterization, we create a physics-aware training framework for the fast and accurate deployment of computer-trained models onto optical hardware. Furthermore, we theoretically analyze and experimentally demonstrate physics-aware adversarial attacks onto the system, which are generated from a complex-valued gradient-based algorithm. The detailed adversarial robustness comparison with conventional multiple layer perceptrons and convolutional neural networks features a distinct statistical adversarial property in diffractive optical neural networks. Our full stack of software and hardware provides new opportunities of employing diffractive optics in a variety of ML tasks and enabling the research on optical adversarial ML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源