论文标题

部分可观测时空混沌系统的无模型预测

Online Graph Learning from Social Interactions

论文作者

Shumovskaia, Valentina, Ntemos, Konstantinos, Vlaski, Stefan, Sayed, Ali H.

论文摘要

社会学习算法为由本地推理和点对点交流而产生的社交网络的观点形成了模型。相互作用发生在潜在的图形拓扑上,该拓扑描述了对代理对之间的信息流和相对影响。对于给定的图形拓扑,这些算法可以预测形成的观点。在这项工作中,我们研究了反问题。鉴于社会学习模型和对信仰演变的观察,我们旨在确定基本的图形拓扑。博学的图允许推断代理之间的成对影响,代理人对网络行为的总体影响以及通过社交网络的信息流。所提出的算法本质上是在线的,可以动态适应图形拓扑或真实假设的变化。

Social learning algorithms provide models for the formation of opinions over social networks resulting from local reasoning and peer-to-peer exchanges. Interactions occur over an underlying graph topology, which describes the flow of information and relative influence between pairs of agents. For a given graph topology, these algorithms allow for the prediction of formed opinions. In this work, we study the inverse problem. Given a social learning model and observations of the evolution of beliefs over time, we aim at identifying the underlying graph topology. The learned graph allows for the inference of pairwise influence between agents, the overall influence agents have over the behavior of the network, as well as the flow of information through the social network. The proposed algorithm is online in nature and can adapt dynamically to changes in the graph topology or the true hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源