论文标题
基于一致性的模仿和适应:一个四倍的机器人使用深度加固学习模仿视频中的动物
Imitation and Adaptation Based on Consistency: A Quadruped Robot Imitates Animals from Videos Using Deep Reinforcement Learning
论文作者
论文摘要
四足动物运动的本质是重心的运动,在四足动物的作用中具有一种模式。但是,四足机器人的步态运动计划是耗时的。自然界中的动物可以为机器人提供大量步态信息,以学习和模仿。通用方法通过运动捕获系统或许多运动数据点学习动物姿势。在本文中,我们提出了一个视频模仿适应网络(VIAN),该网络可以模仿动物的作用并将其从几秒钟的视频中适应机器人。深度学习模型从视频中提取了动物运动期间的关键点。 Vian消除了噪声,并使用运动适配器提取了运动的关键信息,然后将提取的运动功能作为运动模式应用于深钢筋学习(DRL)。为了确保学习结果与视频中的动物运动之间的相似性,我们介绍了基于运动一致性的奖励。 DRL探索并学会了从视频中的运动模式中保持平衡,模仿动物的动作,并最终使模型可以从不同动物的短动作视频中学习步态或技能,并将运动模式转移到真正的机器人中。
The essence of quadrupeds' movements is the movement of the center of gravity, which has a pattern in the action of quadrupeds. However, the gait motion planning of the quadruped robot is time-consuming. Animals in nature can provide a large amount of gait information for robots to learn and imitate. Common methods learn animal posture with a motion capture system or numerous motion data points. In this paper, we propose a video imitation adaptation network (VIAN) that can imitate the action of animals and adapt it to the robot from a few seconds of video. The deep learning model extracts key points during animal motion from videos. The VIAN eliminates noise and extracts key information of motion with a motion adaptor, and then applies the extracted movements function as the motion pattern into deep reinforcement learning (DRL). To ensure similarity between the learning result and the animal motion in the video, we introduce rewards that are based on the consistency of the motion. DRL explores and learns to maintain balance from movement patterns from videos, imitates the action of animals, and eventually, allows the model to learn the gait or skills from short motion videos of different animals and to transfer the motion pattern to the real robot.