论文标题
部分可观测时空混沌系统的无模型预测
Random Ensemble Reinforcement Learning for Traffic Signal Control
论文作者
论文摘要
交通信号控制是智能运输构建的重要组成部分。有效的交通信号控制策略可以减少交通拥堵,提高城市道路交通效率并促进人们的生活。交通信号控制的现有强化学习方法主要集中于通过单独的神经网络学习。这种独立的神经网络可能属于训练结果的局部最佳。更糟糕的是,收集的数据只能进行一次采样,因此数据利用率较低。因此,我们提出了随机的集合双DQN光(Relight)模型。它可以通过加强学习并结合随机的整体学习来动态学习流量信号控制策略,以避免陷入本地最佳限度以达到最佳策略。此外,我们介绍了更新对数据(UTD)比率,以控制数据重用的数量,以改善数据利用率较低的问题。此外,我们已经对合成数据和现实数据进行了足够的实验,以证明我们所提出的方法可以比现有的最佳方法获得更好的交通信号控制效果。
Traffic signal control is a significant part of the construction of intelligent transportation. An efficient traffic signal control strategy can reduce traffic congestion, improve urban road traffic efficiency and facilitate people's lives. Existing reinforcement learning approaches for traffic signal control mainly focus on learning through a separate neural network. Such an independent neural network may fall into the local optimum of the training results. Worse more, the collected data can only be sampled once, so the data utilization rate is low. Therefore, we propose the Random Ensemble Double DQN Light (RELight) model. It can dynamically learn traffic signal control strategies through reinforcement learning and combine random ensemble learning to avoid falling into the local optimum to reach the optimal strategy. Moreover, we introduce the Update-To-Data (UTD) ratio to control the number of data reuses to improve the problem of low data utilization. In addition, we have conducted sufficient experiments on synthetic data and real-world data to prove that our proposed method can achieve better traffic signal control effects than the existing optimal methods.