论文标题

ICU的分辨率血压信号的混合伪影检测系统

Hybrid Artifact Detection System for Minute Resolution Blood Pressure Signals from ICU

论文作者

Haule, Hollan, Kafantaris, Evangelos, Lo, Tsz-Yan Milly, Qin, Chen, Escudero, Javier

论文摘要

重症监护病房(ICU)中的生理监测会生成可用于临床研究的数据。但是,临床环境中的记录条件限制了由于噪声和伪影引起的生理信号中相关信息的自动提取。因此,在临床研究之前取消伪影至关重要。经验丰富的研究人员的手动注释是去除工件的黄金标准,这是由于ICU中产生的数据量而耗时且昂贵的。在这项研究中,我们提出了一个混合伪影检测系统,该系统将各种自动编码器与统计检测成分相结合,用于标记人工样本,以自动化清洁生理记录的昂贵过程。该系统应用于重症监护病房数据集的平均血压信号。它的性能通过专家的手动注释来验证。我们使用其他两个将ARIMA或基于自动编码器的模型与我们的统计检测组件组合的系统进行基准测试系统的性能。我们的结果表明,该系统始终达到超过90%的灵敏度和特异性水平。因此,它为在ICU的录音中自动化数据清理提供了初始基础。

Physiological monitoring in intensive care units (ICU) generates data that can be used in clinical research. However, the recording conditions in clinical settings limit the automated extraction of relevant information from physiological signals due to noise and artifacts. Therefore, removing artifacts before clinical research is essential. Manual annotation by experienced researchers, which is the gold standard for removing artifacts, is time-consuming and costly due to the volume of the data generated in the ICU. In this study, we propose a hybrid artifact detection system that combines a Variational Autoencoder with a statistical detection component for the labeling of artifactual samples to automate the costly process of cleaning physiological recordings. The system is applied to minute-by-minute mean blood pressure signals from an intensive care unit dataset. Its performance is verified by manual annotations made by an expert. We benchmark the performance of our system with two other systems that combine an ARIMA or an autoencoder-based model with our statistical detection component. Our results indicate that the system consistently achieves sensitivity and specificity levels of over 90%. Thus, it provides an initial foundation to automate data cleaning in recordings from ICU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源