论文标题
通过区域对线的积分转换和域映射评估复合物2D几何的量势的快速高阶方案
A fast, high-order scheme for evaluating volume potentials on complex 2D geometries via area-to-line integral conversion and domain mappings
论文作者
论文摘要
本文提出了一种新的高阶精度算法,用于通过在复杂几何形式中卷积使用体积源函数的卷积,以卷卷为绿色的函数,以找到线性,恒定的偏微分方程(PDE)的特定解决方案。利用体积结构域的分解,该积分是通过常规盒子(将方案兼容与自适应盒代码兼容)和三角形区域(可能在边界附近弯曲)。通过将体积区域的积分转换为线积分,使用庞加莱引理的元素来界定参考音量单元的线积分,然后利用现有的一维近节和奇异的四倍体来处理奇异的和近乎单位的正交。该方案通过将平滑函数的全球规则耦合到全球规则与局部目标依赖性的奇异正交校正,并依赖于良好的Quiltiim(Quiltiim offoriim offoriim offoriim offoriim offoriim),该方案与快速多极方法(FMM)相兼容,从而实现最佳的渐近复杂性,并依赖于良好的高度(均衡且有效的数量),并依赖于正交多项式系统的正交性多项式系统,并依赖于局部依赖于目标的奇异性矫正措施。体积来源。我们的领域离散化方案自然与标准的网格划分软件(例如GMSH)兼容,GMSH被用来离散围绕域边界的狭窄区域。我们提出了8阶准确的结果,证明了该方法的成功,示例显示了复杂几何形状上的12位准确性,并且对于静态几何示例,我们的数值示例显示了特定解决方案的评估时间超过$ 99 \%的$ 99 \%。
This article presents a new high-order accurate algorithm for finding a particular solution to a linear, constant-coefficient partial differential equation (PDE) by means of a convolution of the volumetric source function with the Green's function in complex geometries. Utilizing volumetric domain decomposition, the integral is computed over a union of regular boxes (lending the scheme compatibility with adaptive box codes) and triangular regions (which may be potentially curved near boundaries). Singular and near-singular quadrature is handled by converting integrals on volumetric regions to line integrals bounding a reference volume cell using cell mappings and elements of the Poincaré lemma, followed by leveraging existing one-dimensional near-singular and singular quadratures appropriate to the singular nature of the kernel. The scheme achieves compatibility with fast multipole methods (FMMs) and thereby optimal asymptotic complexity by coupling global rules for target-independent quadrature of smooth functions to local target-dependent singular quadrature corrections, and it relies on orthogonal polynomial systems on each cell for well-conditioned, high-order and efficient (with respect to number of required volume function evaluations) approximation of arbitrary volumetric sources. Our domain discretization scheme is naturally compatible with standard meshing software such as Gmsh, which are employed to discretize a narrow region surrounding the domain boundaries. We present 8th-order accurate results, demonstrate the success of the method with examples showing up to 12-digit accuracy on complex geometries, and, for static geometries, our numerical examples show well over $99\%$ of evaluation time of the particular solution is spent in the FMM step.