论文标题
鲁宾定理的简短证明
A short proof of Rubin's theorem
论文作者
论文摘要
在一个非凡的定理中,鲁宾先生证明,如果一组$ g $以本地紧凑的Hausdorff Space $ x $而没有孤立点的本地密集的方式,则Space $ x $以及$ x $ oon $ x $的动作是唯一的,最多是$ g $ - equivariant同型同性恋。在这里,我们使用poset上的超级滤器的等效类别来重建空间$ x $的点。
In a remarkable theorem, M. Rubin proved that if a group $G$ acts in a locally dense way on a locally compact Hausdorff space $X$ without isolated points, then the space $X$ and the action of $G$ on $X$ are unique up to $G$-equivariant homeomorphism. Here we give a short, self-contained proof of Rubin's theorem, using equivalence classes of ultrafilters on a poset to reconstruct the points of the space $X$.