论文标题
后坐力成像,以超出标准模型以外的暗物质,中微子和物理的定向检测
Recoil imaging for directional detection of dark matter, neutrinos, and physics beyond the Standard Model
论文作者
论文摘要
后坐力成像需要检测由粒子相互作用产生的空间分辨的电离轨道。这是许多类别的检测器中高度追捧的能力,跨粒子和肌肉粒子物理学具有广泛的应用。但是,在低能的情况下,电离签名尺寸较小,后坐力成像似乎是微图案气体探测器的实际目标。这份白皮书概述了后坐力成像的物理案例,并提出了一个十年计划,以朝着对低能后坐力的定向检测,其灵敏度和分辨率接近基本的性能限制。涵盖的科学案例包括:将暗物质发现到中微子雾中,Sub-Mev太阳中微子的定向检测,相干 - 弹性中微子核散射的精确研究,太阳轴的检测,Migdal效应的测量,X射线极性层层,X射线极化层,其他几种应用物理学。我们还概述了测试对探测器性能至关重要的概念所必需的研发计划:$ \ sim $ \ sim $ 100微米级,具有完整3D空间分辨率的单主要电子灵敏度。这些进步包括:使用负离子漂移,具有高清电子读数的电子计数,具有光学读数的时间投影室以及在高密度气体(例如氩气)中进行核后坐力跟踪的可能性。我们还讨论了将这些探测器扩展到吨尺度及其他地区所需的读数和电子系统。
Recoil imaging entails the detection of spatially resolved ionization tracks generated by particle interactions. This is a highly sought-after capability in many classes of detector, with broad applications across particle and astroparticle physics. However, at low energies, where ionization signatures are small in size, recoil imaging only seems to be a practical goal for micro-pattern gas detectors. This white paper outlines the physics case for recoil imaging, and puts forward a decadal plan to advance towards the directional detection of low-energy recoils with sensitivity and resolution close to fundamental performance limits. The science case covered includes: the discovery of dark matter into the neutrino fog, directional detection of sub-MeV solar neutrinos, the precision study of coherent-elastic neutrino-nucleus scattering, the detection of solar axions, the measurement of the Migdal effect, X-ray polarimetry, and several other applied physics goals. We also outline the R&D programs necessary to test concepts that are crucial to advance detector performance towards their fundamental limit: single primary electron sensitivity with full 3D spatial resolution at the $\sim$100 micron-scale. These advancements include: the use of negative ion drift, electron counting with high-definition electronic readout, time projection chambers with optical readout, and the possibility for nuclear recoil tracking in high-density gases such as argon. We also discuss the readout and electronics systems needed to scale-up such detectors to the ton-scale and beyond.