论文标题
字符串在t折中的相互作用
Interactions of strings on a T-fold
论文作者
论文摘要
我们考虑了从世界表的角度来看t折中字符串的相互作用,这在$α'$中完全是。作为一个具体的示例,我们采用一个模型,其中SO(8)增强点处的内部圆环被T偶尔(T折)扭曲,并计算一类无质量字符串的散射幅度。涉及扭曲和不扭曲字符串的四点振幅以封闭形式获得了超几何函数。通过分解,发现扭曲和不扭曲的字符串的三分耦合被沿着内部圆环的手性动量抑制,并以1/4的整体力量进行量化。还获得了高能极限中四点振幅的渐近形式。我们的结果仅依赖于T偶扭曲和对称性增强的lie代数晶格的不对称轨道的一般特性,因此可以定性地扩展到更通用的T折。
We consider the interactions of strings on T-folds from the world-sheet point of view which are exact in $α'$. As a concrete example, we take a model where the internal torus at the so(8) enhancement point is twisted by T-duality (T-folded), and compute the scattering amplitudes of a class of massless strings. The four-point amplitudes involving both twisted and untwisted strings are obtained in a closed form in terms of the hypergeometric function. By their factorization, the three-point coupling of the twisted and untwisted strings is found to be suppressed by the chiral momenta along the internal torus, and quantized in integer powers of 1/4. The asymptotic forms of the four-point amplitudes in high-energy limits are also obtained. Our results rely only on general properties of the asymmetric orbifold by the T-duality twist and of the Lie algebra lattice from the symmetry enhancement, and thus may be extended qualitatively to more general T-folds.