论文标题

MLRM:一个基于多线性回归的模型,用于一天的平均温度预测

MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of A Day

论文作者

Gupta, Ishu, Mittal, Harsh, Rikhari, Deepak, Singh, Ashutosh Kumar

论文摘要

天气是每天影响我们周围所有人的现象。数十年来,由于研究人员试图使用传统的气象技术来预测天气变化,因此天气预测一直是一个重要的研究点。随着现代技术和计算能力的出现,我们可以借助机器学习技术来做到这一点。我们旨在使用过去的气象数据和特征使用多个线性回归模型来预测区域的天气。评估模型的性能并得出结论。该模型能够成功预测一天的平均温度,误差为2.8摄氏度。

Weather is a phenomenon that affects everything and everyone around us on a daily basis. Weather prediction has been an important point of study for decades as researchers have tried to predict the weather and climatic changes using traditional meteorological techniques. With the advent of modern technologies and computing power, we can do so with the help of machine learning techniques. We aim to predict the weather of an area using past meteorological data and features using the Multiple Linear Regression Model. The performance of the model is evaluated and a conclusion is drawn. The model is successfully able to predict the average temperature of a day with an error of 2.8 degrees Celsius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源