论文标题

超临界二氧化碳燃烧的化学动力学机制的发展

The Development of a Chemical Kinetic Mechanism for Combustion in Supercritical Carbon Dioxide

论文作者

Harman-Thomas, James M., Hughes, Kevin J., Pourkashanian, Mohamed

论文摘要

直接发射的超临界二氧化碳(SCO2)功率周期允许在固有的碳捕获的氧气条件下燃烧气体燃料。由于本质上捕获了二氧化碳,因此对整个植物的捕获效率很小,这意味着发电厂的效率与传统的化石燃料发电厂相似,而无需捕获碳和存储。但是,在高压和大量二氧化碳中,燃烧机制的理解很少。因此,在本文中,已经采用了四种已建立的化学动力学机制的敏感性和定量分析,以确定一系列不同条件的最重要的反应和最佳性能机制。 CH3O2化学被确定为用于对200 atm以上的甲烷燃烧建模的关键机理。谢菲尔德大学(UOS)SCO2机制在当前工作中创建的机制更好地模拟了大量二氧化碳中高压燃烧的点火延迟时间(IDT)。定量分析表明,UOS SCO2机制是最大数量IDT数据集的最佳拟合度,并且具有最低的平均绝对误差值,因此与现有的四种化学化学动力学机制相比,性能较高,在低压条件下进行了验证。

Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源