论文标题
AIWAVE:具有3-D训练的仿射小波变换的体积图像压缩
aiWave: Volumetric Image Compression with 3-D Trained Affine Wavelet-like Transform
论文作者
论文摘要
体积图像压缩已成为有效传输和存储生物学研究和临床实践中产生的图像的紧迫任务。目前,最常用的体积图像压缩方法基于小波变换,例如JP3D。但是,JP3D采用理想,可分离,全局和固定的小波基础来将输入图像从像素域转换为频域,这严重限制了其性能。在本文中,我们首先设计了一个3D训练的小波样变换,以实现信号依赖性和不可分割的变换。然后,引入了仿射小波,以捕获体积图像不同区域中的各种局部相关性。此外,我们将所提出的类似小波的转换嵌入到称为AIWave的端到端压缩框架中,以启用各种数据集的自适应压缩方案。最后但并非最不重要的一点是,我们根据轴向方向的体积数据特性介绍了仿射小波样转换的重量共享策略,以减少参数的量。实验结果表明:1)当我们与简单的分解熵模块合作时,AIWave的性能优于JP3D,并且在编码和解码复杂性方面相当; 2)当添加上下文模块以进一步删除信号冗余时,AIWave可以取得比HEVC更好的性能。
Volumetric image compression has become an urgent task to effectively transmit and store images produced in biological research and clinical practice. At present, the most commonly used volumetric image compression methods are based on wavelet transform, such as JP3D. However, JP3D employs an ideal, separable, global, and fixed wavelet basis to convert input images from pixel domain to frequency domain, which seriously limits its performance. In this paper, we first design a 3-D trained wavelet-like transform to enable signal-dependent and non-separable transform. Then, an affine wavelet basis is introduced to capture the various local correlations in different regions of volumetric images. Furthermore, we embed the proposed wavelet-like transform to an end-to-end compression framework called aiWave to enable an adaptive compression scheme for various datasets. Last but not least, we introduce the weight sharing strategies of the affine wavelet-like transform according to the volumetric data characteristics in the axial direction to reduce the amount of parameters. The experimental results show that: 1) when cooperating our trained 3-D affine wavelet-like transform with a simple factorized entropy module, aiWave performs better than JP3D and is comparable in terms of encoding and decoding complexities; 2) when adding a context module to further remove signal redundancy, aiWave can achieve a much better performance than HEVC.