论文标题

Zin:何时以及如何在没有环境分区的情况下学习不变性?

ZIN: When and How to Learn Invariance Without Environment Partition?

论文作者

Lin, Yong, Zhu, Shengyu, Tan, Lu, Cui, Peng

论文摘要

遇到异质数据是司空见惯的,数据分布的某些方面可能会有所不同,但潜在的因果机制仍然恒定。当数据根据异质性将数据分为不同的环境时,最新的不变学习方法提出了基于此环境分区的强大和不变模型。因此,即使没有提供环境分区,也很容易利用固有的异质性。不幸的是,在这项工作中,我们表明,在这种情况下,如果没有进一步的归纳偏见或其他信息,那么在这种情况下学习不变特征是不可能的。然后,我们提出了一个框架,以共同学习环境分区和不变代表,并在其他辅助信息的协助下。我们为我们的框架提供了足够和必要的条件,可以在相当普遍的环境下确定不变特征。关于合成和现实世界数据集的实验结果验证了我们的分析,并证明了对现有方法的提高框架的性能。最后,我们的结果还提出了在考虑没有环境分区的学习不变模型时,在未来的工作中更明确地使归纳偏见的作用更加明确。代码可在https://github.com/linyongver/zin_official上找到。

It is commonplace to encounter heterogeneous data, of which some aspects of the data distribution may vary but the underlying causal mechanisms remain constant. When data are divided into distinct environments according to the heterogeneity, recent invariant learning methods have proposed to learn robust and invariant models based on this environment partition. It is hence tempting to utilize the inherent heterogeneity even when environment partition is not provided. Unfortunately, in this work, we show that learning invariant features under this circumstance is fundamentally impossible without further inductive biases or additional information. Then, we propose a framework to jointly learn environment partition and invariant representation, assisted by additional auxiliary information. We derive sufficient and necessary conditions for our framework to provably identify invariant features under a fairly general setting. Experimental results on both synthetic and real world datasets validate our analysis and demonstrate an improved performance of the proposed framework over existing methods. Finally, our results also raise the need of making the role of inductive biases more explicit in future works, when considering learning invariant models without environment partition. Codes are available at https://github.com/linyongver/ZIN_official .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源