论文标题

信息理论的进程学习

Information-Theoretic Odometry Learning

论文作者

Zhang, Sen, Zhang, Jing, Tao, Dacheng

论文摘要

在本文中,我们提出了一个旨在学习动机估计的学习动机方法的统一信息理论框架,这是许多机器人技术和视觉任务的关键组成部分,例如导航和虚拟现实,在这些方法中需要实时需要相对摄像头姿势。我们将此问题提出来优化变分信息的瓶颈目标函数,从而消除了潜在表示中的姿势 - 呈现信息。拟议的框架为信息理论语言中的性能评估和理解提供了优雅的工具。具体而言,我们绑定了深度信息瓶颈框架的概括错误和潜在表示的可预测性。这些不仅提供了绩效保证,还提供了模型设计,样本收集和传感器选择的实用指导。此外,随机潜在表示提供了一种自然的不确定性度量,而无需额外的结构或计算。在两个众所周知的探测数据集上的实验证明了我们方法的有效性。

In this paper, we propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation, a crucial component of many robotics and vision tasks such as navigation and virtual reality where relative camera poses are required in real time. We formulate this problem as optimizing a variational information bottleneck objective function, which eliminates pose-irrelevant information from the latent representation. The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language. Specifically, we bound the generalization errors of the deep information bottleneck framework and the predictability of the latent representation. These provide not only a performance guarantee but also practical guidance for model design, sample collection, and sensor selection. Furthermore, the stochastic latent representation provides a natural uncertainty measure without the needs for extra structures or computations. Experiments on two well-known odometry datasets demonstrate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源