论文标题
P-ADIC $ G_2 $的拨动诱导表示,由$ so_4 $,i,i
Parabolically induced representations of p-adic $G_2$ distinguished by $SO_4$, I
论文作者
论文摘要
我们认为,当诱导抛物线寄生虫为$p_β$时,使用几何引理对称空间$ so_4 \ so_4 \ so_4 \ backslash g_2 $的抛物面诱导表示。使用对$ gl_8 $中$ g_2 $的嵌入的明确描述,我们精确地表征了$(so_4,χ)$的诱导表示形式,鉴于选择了某种类型的互动。
We consider the parabolically induced representations of the symmetric space $SO_4\backslash G_2$ over a p-adic field using the geometric lemma when the inducing parabolic is $P_β$. Using an explicit description of the embedding of $G_2$ in $GL_8$, we characterize precisely the induced representations which are $(SO_4, χ)$-distinguished, given a certain type of involutions is chosen.