论文标题

深度二进制强化学习以进行可扩展验证

Deep Binary Reinforcement Learning for Scalable Verification

论文作者

Lazarus, Christopher, Kochenderfer, Mykel J.

论文摘要

神经网络用作功能近似器的使用已使增强学习(RL)的许多进步。神经网络的概括能力与RL算法的进步相结合,重新点燃了人工智能领域。尽管具有力量,但神经网络仍被视为黑匣子,并且它们在安全至关重要的环境中的使用仍然是一个挑战。最近,神经网络验证已成为证明网络安全性能的一种方式。验证是一个棘手的问题,很难扩展到大型网络,例如深入增强学习中的网络。我们提供了一种更容易验证的RL政策的方法。我们使用二进制神经网络(BNNS),这是一种主要是二进制参数的网络。我们提出了专门针对BNN的RL算法。在为Atari环境训练BNN之后,我们验证了鲁棒性特性。

The use of neural networks as function approximators has enabled many advances in reinforcement learning (RL). The generalization power of neural networks combined with advances in RL algorithms has reignited the field of artificial intelligence. Despite their power, neural networks are considered black boxes, and their use in safety-critical settings remains a challenge. Recently, neural network verification has emerged as a way to certify safety properties of networks. Verification is a hard problem, and it is difficult to scale to large networks such as the ones used in deep reinforcement learning. We provide an approach to train RL policies that are more easily verifiable. We use binarized neural networks (BNNs), a type of network with mostly binary parameters. We present an RL algorithm tailored specifically for BNNs. After training BNNs for the Atari environments, we verify robustness properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源