论文标题

在相机像素内进行有效的高光谱图像处理

Toward Efficient Hyperspectral Image Processing inside Camera Pixels

论文作者

Datta, Gourav, Yin, Zihan, Jacob, Ajey, Jaiswal, Akhilesh R., Beerel, Peter A.

论文摘要

高光谱摄像机由于存在数百个光谱带,而不是传统摄像机中的三个通道(红色,绿色和蓝色),因此产生了大量数据。这需要高光谱图像传感器与用于对图像进行分类/检测/跟踪图像的处理器之间的大量数据传输,逐帧,消耗高能量并引起带宽和安全瓶颈。为了减轻此问题,我们提出了一种像素(PIP)的形式,该形式利用高级CMOS技术使像素阵列能够执行现代卷积神经网络(CNN)要求的广泛的复杂操作,以获得高光谱图像识别(HSI)。因此,我们的PIP优化自定义CNN层有效地压缩了输入数据,从而大大降低了向下游传输数据传输到HSI处理单元所需的带宽。与现有硬件实现相比,这将与照相机和CNN处理单元的平均能耗分别减少了25.06倍和3.90倍。我们的自定义模型在标准HSI基准的基线模型的0.56%以内产生平均测试精度。

Hyperspectral cameras generate a large amount of data due to the presence of hundreds of spectral bands as opposed to only three channels (red, green, and blue) in traditional cameras. This requires a significant amount of data transmission between the hyperspectral image sensor and a processor used to classify/detect/track the images, frame by frame, expending high energy and causing bandwidth and security bottlenecks. To mitigate this problem, we propose a form of processing-in-pixel (PIP) that leverages advanced CMOS technologies to enable the pixel array to perform a wide range of complex operations required by the modern convolutional neural networks (CNN) for hyperspectral image recognition (HSI). Consequently, our PIP-optimized custom CNN layers effectively compress the input data, significantly reducing the bandwidth required to transmit the data downstream to the HSI processing unit. This reduces the average energy consumption associated with pixel array of cameras and the CNN processing unit by 25.06x and 3.90x respectively, compared to existing hardware implementations. Our custom models yield average test accuracies within 0.56% of the baseline models for the standard HSI benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源