论文标题

GESN合金中短期顺序的3D纳米级映射

3D Nanoscale Mapping of Short-Range Order in GeSn Alloys

论文作者

Liu, Shang, Covian, Alejandra Cuervo, Wang, Xiaoxin, Cline, Cory T., Akey, Austin, Dong, Weiling, Yu, Shui-Qing, Liu, Jifeng

论文摘要

SI上的GESN由于其用于中红外应用的可调直接带隙而引起了很多研究的兴趣。最近,在理论上预测了GESN合金中的短距离顺序(SRO),这对频带结构产生了深远的影响。但是,在GESN中表征SRO是具有挑战性的。在原子断层扫描中Kth-Nearest邻居(KNN)的物理知识泊松统计分析的指导下,这里为GESN中的3D纳米级SRO映射和半定量菌株映射提供了一种新方法。对于〜14 at。%sn的GESN,SN-SN 1NN的SRO参数在10x10x10 nm $^{3} $ nanocubes中可以偏离随机合金的SRO参数,$ \ pm $ \ pm $ \ pm $ 15%。 SRO参数的相对较大的波动有助于光学观察到的带边缘软化。 SN-SN 1NN也倾向于对表面更受青睐,在应变弛豫或拉伸应变下受到偏爱,而几乎与局部SN组成无关。基于原子位置最小平方拟合的算法进一步验证了这种Poisson-KNN统计方法。与现有的宏观光谱或电子显微镜技术相比,这种新的统计分析在纳米级分辨率下以相对较大的体积和数百万个原子提供了纳米级分辨率的3D SRO映射。它也可以扩展到其他合金系统中的SRO。

GeSn on Si has attracted much research interest due to its tunable direct bandgap for mid-infrared applications. Recently, short-range order (SRO) in GeSn alloys has been theoretically predicted, which profoundly impacts the band structure. However, characterizing SRO in GeSn is challenging. Guided by physics-informed Poisson statistical analyses of Kth-nearest neighbors (KNN) in atom probe tomography, a new approach is demonstrated here for 3D nanoscale SRO mapping and semi-quantitative strain mapping in GeSn. For GeSn with ~14 at.% Sn, the SRO parameters of Sn-Sn 1NN in 10x10x10 nm$^{3}$ nanocubes can deviate from that of the random alloys by $\pm$15%. The relatively large fluctuation of the SRO parameters contributes to band-edge softening observed optically. Sn-Sn 1NN also tends to be more favored towards the surface, less favored under strain relaxation or tensile strain, while almost independent of local Sn composition. An algorithm based on least square fit of atomic positions further verifies this Poisson-KNN statistical method. Compared to existing macroscopic spectroscopy or electron microscopy techniques, this new APT statistical analysis uniquely offers 3D SRO mapping at nanoscale resolution in a relatively large volume with millions of atoms. It can also be extended to investigate SRO in other alloy systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源