论文标题

毫米尺度的地形使珊瑚幼虫在波动振荡流中

Millimeter-scale topography enables coral larval settlement in wave-driven oscillatory flow

论文作者

Levenstein, Mark A., Gysbers, Daniel J., Marhaver, Kristen L., Kattom, Sameh, Tichy, Lucas, Quinlan, Zachary, Tholen, Haley M., Kelly, Linda Wegley, Vermeij, Mark J. A., Johnson, Amy J. Wagoner, Juarez, Gabriel

论文摘要

在波浪统治的近岸环境中,幼虫定居是各种海洋无脊椎动物的最关键生活阶段,但它被遗憾的是原地观察到众所周知,几乎不可能。使用定制的水槽水箱,该水槽在浅珊瑚礁上模仿振荡流体的流动,我们表明毫米尺度的底栖地形会增加慢速降低珊瑚幼虫的沉降,相对于平坦的底物,相对于平坦的底物而言。流场的粒子跟踪速度法表明,毫米级脊引入了流动再循环区域,将幼虫重定向到底物表面并降低了局部流体速度,从而有效地增加了幼虫的沉降时间窗口。与实验一致,计算流体动力学建模和基于代理的幼虫模拟也显示出脊底物上的沉降明显更高。这些发现突出了基于物理的基材设计如何创造新的机会来增加幼虫募集以进行生态系统恢复。

Larval settlement in wave-dominated, nearshore environments is the most critical life stage for a vast array of marine invertebrates, yet it is poorly understood and virtually impossible to observe in situ. Using a custom-built flume tank that mimics the oscillatory fluid flow over a shallow coral reef, we show that millimeter-scale benthic topography increases the settlement of slow-swimming coral larvae by an order of magnitude relative to flat substrates. Particle tracking velocimetry of flow fields revealed that millimeter-scale ridges introduced regions of flow recirculation that redirected larvae toward the substrate surface and decreased the local fluid speed, effectively increasing the window of time for larvae to settle. In agreement with experiments, computational fluid dynamics modeling and agent-based larval simulations also showed significantly higher settlement on ridged substrates. These findings highlight how physics-based substrate design can create new opportunities to increase larval recruitment for ecosystem restoration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源