论文标题
在近端超导体上延长磁分子的自旋激发寿命
Extending the spin excitation lifetime of a magnetic molecule on a proximitized superconductor
论文作者
论文摘要
沉积在表面上的磁分子是单独解决和操纵旋转的有前途的平台。需要长的旋转激发寿命来利用它们在量子信息处理和数据存储中。通常,分子自旋与金属表面的传导电子偶联会导致自旋兴奋的快速松弛到基态。但是,底物中的超导削皮效应的存在可以保护激发自旋免受衰减。在这项工作中,我们表明,接近性诱导的超导金膜可以维持FETPP-CL分子的自旋激发,超过80n。通过使用扫描隧道光谱研究在V(100)上,在V(100)上研究S = 5/2多重的FETPP-CL的s = 5/2多重弹性激发来确定这一长度值。自旋寿命随着膜厚度的增加而降低,与在超导间隙内发现的一对De Gennes-Saint James共振的逐渐缝隙相连。我们的结果阐明了使用邻近金电极来解决表面上的量子旋转,从而设想了调整其自旋寿命值的新途径。
Magnetic molecules deposited on surfaces are a promising platform to individually address and manipulate spins. Long spin excitation lifetimes are necessary to utilize them in quantum information processing and data storage. Normally, coupling of the molecular spin with the conduction electrons of metallic surfaces causes fast relaxation of spin excitations into the ground state. However, the presence of superconducting paring effects in the substrate can protect the excited spin from decaying. In this work, we show that a proximity-induced superconducting gold film can sustain spin excitations of a FeTPP-Cl molecule for more than 80ns. This long value was determined by studying inelastic spin excitations of the S=5/2 multiplet of FeTPP-Cl on Au films over V(100) using scanning tunneling spectroscopy. The spin lifetime decreases with increasing film thickness, in apparent connection with the gradual gap-closing of a pair of de Gennes-Saint James resonances found inside the superconducting gap. Our results elucidate the use of proximitized gold electrodes for addressing quantum spins on surfaces, envisioning new routes for tuning the value of their spin lifetime.