论文标题
从CT电影照片中恢复医疗图像
Recovering medical images from CT film photos
论文作者
论文摘要
尽管医学图像(例如计算机断层扫描(CT))以DICOM格式存储在医院PAC中,但在许多国家,将电影作为可转移的媒介打印出来,以进行自存储和次要咨询。同样,随着手机摄像机的普遍性,拍摄CT电影的照片很常见,不幸的是,这会遭受几何变形和照明变化。在这项工作中,我们研究了恢复CT膜的问题,该电影在文献中标记了\ textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {textbf {the The The The The The The The The The The Indrestation} on Morncopt of Ulworce of Ulworce of Ulworke的最佳知识。我们首先使用广泛使用的计算机图形软件搅拌器构建大型头部CT胶片数据库CTFILM20K,由大约20,000张图片组成。我们还记录了与几何变形有关(例如3D坐标,深度,正常和UV图)和照明变化(例如反击图)有关的所有随附信息。然后,我们提出了一个名为\ textbf {f} ilm \ textbf {i} mage \ textbf {re} covery \ textbf {net}工作(\ textbf {fireenet})的深层框架,以解决几何形态和照明变化,从而从ct concection concounce concession concession concection concection concection concounde concession concounce concespony concespony concesion concesponion concession(\ textbf {fireenet})最后,我们使用我们的级联模型将露水的图像转换为DICOM文件,以进行进一步的分析,例如放射线特征提取。广泛的实验证明了我们的方法比以前的方法的优越性。我们计划开源的模拟图像和深层模型,以促进CT膜图像分析的研究。
While medical images such as computed tomography (CT) are stored in DICOM format in hospital PACS, it is still quite routine in many countries to print a film as a transferable medium for the purposes of self-storage and secondary consultation. Also, with the ubiquitousness of mobile phone cameras, it is quite common to take pictures of CT films, which unfortunately suffer from geometric deformation and illumination variation. In this work, we study the problem of recovering a CT film, which marks \textbf{the first attempt} in the literature, to the best of our knowledge. We start with building a large-scale head CT film database CTFilm20K, consisting of approximately 20,000 pictures, using the widely used computer graphics software Blender. We also record all accompanying information related to the geometric deformation (such as 3D coordinate, depth, normal, and UV maps) and illumination variation (such as albedo map). Then we propose a deep framework called \textbf{F}ilm \textbf{I}mage \textbf{Re}covery \textbf{Net}work (\textbf{FIReNet}) to tackle geometric deformation and illumination variation using the multiple maps extracted from the CT films to collaboratively guide the recovery process. Finally, we convert the dewarped images to DICOM files with our cascade model for further analysis such as radiomics feature extraction. Extensive experiments demonstrate the superiority of our approach over the previous approaches. We plan to open source the simulated images and deep models for promoting the research on CT film image analysis.