论文标题

用于胶质母细胞瘤患者有效治疗计划的人工智能解决方案

Artificial Intelligence Solution for Effective Treatment Planning for Glioblastoma Patients

论文作者

Goddla, Vikram

论文摘要

胶质母细胞瘤是成年人中最常见的恶性脑肿瘤。每年约有200000人死于世界上的胶质母细胞瘤。胶质母细胞瘤患者的中位存活率为12个月,可进行最佳治疗,而无需治疗大约4个月。胶质母细胞瘤看起来像是异质性坏死肿块,周围有不规则的周围增强,周围是血管性水肿。当前的护理标准包括手术切除,放疗和化学疗法,这些疗法需要精确分割脑肿瘤子区域。对于有效的治疗计划,至关重要的是要确定甲基圭氨酸甲基转移酶(MGMT)的甲基化状态,这是化学疗法的阳性预后因素。但是,当前的脑肿瘤分割方法是乏味的,主观的,不可扩展的,并且确定MGMT启动子的甲基化状态的当前技术涉及手术上的侵入性手术,这是昂贵且耗时的。因此,需要开发自动化工具来分割脑肿瘤和非侵入性方法,以预测MGMT启动子的甲基化状态,以促进更好的治疗计划并提高生存率。我使用脑MRI扫描创建了一种由人工智能驱动的综合诊断解决方案,该解决方案由人工智能自动分割脑肿瘤子区域并预测MGMT启动子甲基化状态。我的AI解决方案已在大型数据集中证明,其性能超过了当前标准,并且通过教学本地神经放射学家的数据进行了测试。有了我的解决方案,医生可以提交大脑MRI图像,并在几分钟内获得分割和甲基化预测,并通过有效的治疗计划来指导脑肿瘤患者,并最终改善生存时间。

Glioblastomas are the most common malignant brain tumors in adults. Approximately 200000 people die each year from Glioblastoma in the world. Glioblastoma patients have a median survival of 12 months with optimal therapy and about 4 months without treatment. Glioblastomas appear as heterogeneous necrotic masses with irregular peripheral enhancement, surrounded by vasogenic edema. The current standard of care includes surgical resection, radiotherapy and chemotherapy, which require accurate segmentation of brain tumor subregions. For effective treatment planning, it is vital to identify the methylation status of the promoter of Methylguanine Methyltransferase (MGMT), a positive prognostic factor for chemotherapy. However, current methods for brain tumor segmentation are tedious, subjective and not scalable, and current techniques to determine the methylation status of MGMT promoter involve surgically invasive procedures, which are expensive and time consuming. Hence there is a pressing need to develop automated tools to segment brain tumors and non-invasive methods to predict methylation status of MGMT promoter, to facilitate better treatment planning and improve survival rate. I created an integrated diagnostics solution powered by Artificial Intelligence to automatically segment brain tumor subregions and predict MGMT promoter methylation status, using brain MRI scans. My AI solution is proven on large datasets with performance exceeding current standards and field tested with data from teaching files of local neuroradiologists. With my solution, physicians can submit brain MRI images, and get segmentation and methylation predictions in minutes, and guide brain tumor patients with effective treatment planning and ultimately improve survival time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源