论文标题
发射极属于纳米结构的量子产量:定量理解
Quantum yield of an emitter proximate to nanostructures: a quantitative understanding
论文作者
论文摘要
激子表面等离子体耦合是最基本的光 - 物质相互作用的核心,不仅是发射极的内在特性,而且是发射机 - 环境相互作用的结果。因此,电磁环境的变化,例如金属纳米质结构和发射极的变化,显着修改了近场的轻度 - 物质相互作用,从而以金属纳米结构和发射极中的激子的形式导致能量传递。但是,这种机制在很大程度上尚未开发。在这里,我们开发并应用了半古典电动力学理论和建模技术,以分析激子表面等离子体耦合中的能量传递机理。研究发射极的量子效率是作为发射极位置相对于纳米颗粒及其组装的函数的,其局部等离子场通过形成复杂的耦合模式以及局部介电环境而修改了局部等离子场。这项研究提供了对纳米光学科学基础科学的理论洞察力,并阐明了在诸如超低功率激光器,量子信息处理,光伏,光催化和化学传感等广泛领域的前所未有的应用中。
Exciton-surface plasmon coupling is at the heart of the most elementary light-matter interactions and is a result of not only an intrinsic property of the emitter but that of emitter-environment interaction. Thus, change of electromagnetic environment, as in case of metallic nanoplasmonic structures and an emitter, significantly modifies the near field light-matter interaction, which leads to energy transfer in the form of exciton between metallic nanostructure and the emitter. However, this mechanism remains largely unexplored. Here, we developed and applied semi-classical electrodynamics theory and modeling techniques to analyze the energy transfer mechanism in exciton-surface plasmon coupling. The quantum efficiency of an emitter was investigated as a function of the location of the emitter with respect to nanoparticles and their assembles whose local plasmonic field modified by forming complex coupling modes as well as the local dielectric environment. The research provided a theoretical insight into fundamental science of nanophotonics and shed light on unprecedented applications in wide range fields such as ultra-low power lasers, quantum information processing, photovoltaics, photocatalysis, and chemical sensing.