论文标题
在可集成和不可整合的旋转链中的非局部障碍物和随机可观察物的超阶相关器
Out-of-time-order correlators of nonlocal block-spin and random observables in integrable and nonintegrable spin chains
论文作者
论文摘要
在Ising Floquet系统中,可以研究既可以集成又不可集成的超级相关器(OTOC)。我们研究了固定的自旋可观测值,而是研究旋转的连续对称块或将这些块固定在这些块上的随机操作器作为可观察到的。我们发现仅在可集成和不可整合制度中OTOC的幂律增长。在不可综合的制度中,除了争夺时间之外,OTOC与随机矩阵理论一致的值呈指数饱和。这激发了使用“预刻板”的随机块操作员作为可观察到的。在没有争夺阶段的情况下,观察到在可集成和不可集成系统中OTOC的纯指数饱和。在高斯单位集合中的随机可观察物上,发现OTOC与操作员纠缠熵完全相同,在此类自旋链的先前研究中已经观察到了指数的饱和度。
Out-of-time-order correlators (OTOC) in the Ising Floquet system, that can be both integrable and nonintegrable is studied. Instead of localized spin observables, we study contiguous symmetric blocks of spins or random operators localized on these blocks as observables. We find only power-law growth of OTOC in both integrable and nonintegrable regimes. In the non-integrable regime, beyond the scrambling time, there is an exponential saturation of the OTOC to values consistent with random matrix theory. This motivates the use of "pre-scrambled" random block operators as observables. A pure exponential saturation of OTOC in both integrable and nonintegrable system is observed, without a scrambling phase. Averaging over random observables from the Gaussian unitary ensemble, the OTOC is found to be exactly same as the operator entanglement entropy, whose exponential saturation has been observed in previous studies of such spin-chains.