论文标题
对复杂网络的深层表示的几何和拓扑推断
Geometric and Topological Inference for Deep Representations of Complex Networks
论文作者
论文摘要
了解复杂网络的深刻表示是在互联网时代构建可解释和值得信赖的机器学习应用程序的重要步骤。近似黑匣子模型预测(例如人工或生物神经网)的全球替代模型通常用于为模型的可解释性提供有价值的理论见解。为了评估替代模型在另一个模型中的表示形式,我们需要开发推理方法进行模型比较。先前的研究已经根据其代表性几何形状进行了比较模型和大脑(其特征是模型层或皮质区域中输入模式的表示形式之间的距离矩阵)。在这项研究中,我们建议探索模型和大脑中表示形式的这些摘要统计描述,这是强调拓扑以及表示形式的几何形状的更广泛统计类别的一部分。拓扑摘要统计基于拓扑数据分析(TDA)和其他基于图的方法。我们从用于模型选择时所提供的敏感性和特异性来评估这些统计数据,其目标是将不同的神经网络模型相互关联,并推断出可能最能说明黑匣子表示的计算机制。这些新方法使大脑和计算机科学家能够可视化大脑和模型学到的动态表示转换,并执行模型比较统计的推断。
Understanding the deep representations of complex networks is an important step of building interpretable and trustworthy machine learning applications in the age of internet. Global surrogate models that approximate the predictions of a black box model (e.g. an artificial or biological neural net) are usually used to provide valuable theoretical insights for the model interpretability. In order to evaluate how well a surrogate model can account for the representation in another model, we need to develop inference methods for model comparison. Previous studies have compared models and brains in terms of their representational geometries (characterized by the matrix of distances between representations of the input patterns in a model layer or cortical area). In this study, we propose to explore these summary statistical descriptions of representations in models and brains as part of a broader class of statistics that emphasize the topology as well as the geometry of representations. The topological summary statistics build on topological data analysis (TDA) and other graph-based methods. We evaluate these statistics in terms of the sensitivity and specificity that they afford when used for model selection, with the goal to relate different neural network models to each other and to make inferences about the computational mechanism that might best account for a black box representation. These new methods enable brain and computer scientists to visualize the dynamic representational transformations learned by brains and models, and to perform model-comparative statistical inference.