论文标题
几乎所有交替的组总是由两个主要秩序要素产生
Almost all alternating groups are invariably generated by two elements of prime order
论文作者
论文摘要
我们表明,除$ o(x \ exp(-c(\ log x)^{1/2}(\ log \ log \ log x)^{1/2}))$异常,交替的组$ a_n $无总是由Prime Order的两个元素生成。这(以定量形式)回答了Guralnick,Shareshian和Woodfore的问题。
We show that for all $n\leq X$ apart from $O(X\exp(-c(\log X)^{1/2}(\log \log X)^{1/2}))$ exceptions, the alternating group $A_n$ is invariably generated by two elements of prime order. This answers (in a quantitative form) a question of Guralnick, Shareshian and Woodroofe.