论文标题

有偏见的投票模型:一小组的说服力如何?

Biased-voter model: how persuasive a small group can be?

论文作者

Czaplicka, Agnieszka, Charalambous, Christos, Toral, Raul, Miguel, Maxi San

论文摘要

我们在信心和偏见的存在下研究选民模型动态。我们假设两种类型的选民。无偏见的选民对选民的状况和偏见的选民无动于衷,他们的信心对共同的固定首选国家有偏见。我们使用均值字段理论和使用对近似的ERDőS-rényi随机网络拓扑分析地研究了问题,我们假设相互作用拓扑网络与选民的类型无关。我们发现,对于随机初始设置的情况,对于足够多的选民$ n $,共识的时间与$ \ log(n)/γv$成比例地增加,而$γ$的偏见投票者的比例和$ v $的比例是参数量化选民的偏见($ v = 0 $ bias)。我们通过数值模拟验证我们的分析结果。我们研究了该模型的相互作用网络的偏见依赖性拓扑,并检查了两种不同的全球平均水平保留策略(I和Model II),以获得从偏置独立的随机拓扑案例开始的偏见依赖性随机拓扑结构,例如初始设置。保持所有其他参数持续不断,在Model I,$μ_{BU} $中,有偏见(b)和公正(U)选民之间的平均链接数量以$μ__{UU} $和$μ__{bb} $为代价。在模型II中,$μ_{bu} $保持恒定,而$μ_{bb} $以$μ_{uu} $为代价而变化。我们发现,如果代理遵循模型II所描述的策略,则可以在达成共识的时间上显着减少,并增加达成共识达到首选状态的概率。

We study the voter model dynamics in the presence of confidence and bias. We assume two types of voters. Unbiased voters whose confidence is indifferent to the state of the voter and biased voters whose confidence is biased towards a common fixed preferred state. We study the problem analytically on the complete graph using mean field theory and on an Erdős-Rényi random network topology using the pair approximation, where we assume that the network of interactions topology is independent of the type of voters. We find that for the case of a random initial setup, and for sufficiently large number of voters $N$, the time to consensus increases proportionally to $\log(N)/γv$, with $γ$ the fraction of biased voters and $v$ the parameter quantifying the bias of the voters ($v=0$ no bias). We verify our analytical results through numerical simulations. We study this model on a biased-dependent topology of the network of interactions and examine two distinct, global average-degree preserving strategies (model I and model II) to obtain such biased-dependent random topologies starting from the biased-independent random topology case as the initial setup. Keeping all other parameters constant, in model I, $μ_{BU}$, the average number of links among biased (B) and unbiased (U) voters is varied at the expense of $μ_{UU}$ and $μ_{BB}$, i.e. the average number of links among only unbiased and biased voters respectively. In model II, $μ_{BU}$ is kept constant, while $μ_{BB}$ is varied at the expense of $μ_{UU}$. We find that if the agents follow the strategy described by model II, they can achieve a significant reduction in the time to reach consensus as well as an increment in the probability to reach consensus to the preferred state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源