论文标题

搜索$ b^{0} \ to k_s^{0} k_s^{0}γ$衰减在belle

Search for $B^{0} \to K_S^{0}K_S^{0}γ$ decays at Belle

论文作者

Belle Collaboration, Jeon, H. B., Kang, K. H., Park, H., Adachi, I., Aihara, H., Said, S. Al, Asner, D. M., Atmacan, H., Aushev, T., Ayad, R., Babu, V., Bahinipati, S., Behera, P., Belous, K., Bennett, J., Bernlochner, F., Bessner, M., Bhardwaj, V., Bhuyan, B., Bilka, T., Bobrov, A., Bodrov, D., Borah, J., Bozek, A., Bračko, M., Branchini, P., Browder, T. E., Budano, A., Campajola, M., Červenkov, D., Chang, M. -C., Chang, P., Chen, A., Cheon, B. G., Chilikin, K., Cho, H. E., Cho, K., Cho, S. -J., Choi, S. -K., Choi, Y., Choudhury, S., Cinabro, D., Cunliffe, S., Das, S., Dash, N., De Pietro, G., Dhamija, R., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Epifanov, D., Ferber, T., Ferlewicz, D., Fulsom, B. G., Garg, R., Gaur, V., Gabyshev, N., Giri, A., Goldenzweig, P., Golob, B., Graziani, E., Gu, T., Gudkova, K., Hadjivasiliou, C., Hara, T., Hayasaka, K., Hayashii, H., Hedges, M. T., Higuchi, T., Hou, W. -S., Hsu, C. -L., Inami, K., Inguglia, G., Ishikawa, A., Itoh, R., Iwasaki, M., Iwasaki, Y., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Joo, K. K., Kahn, J., Kakuno, H., Kaliyar, A. B., Kawasaki, T., Kiesling, C., Kim, C. H., Kim, D. Y., Kim, K. -H., Kim, K. T., Kim, Y. -K., Kinoshita, K., Kodyš, P., Konno, T., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Kroeger, R., Krokovny, P., Kuhr, T., Kumar, M., Kumara, K., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lalwani, K., Lam, T., Lange, J. S., Laurenza, M., Lee, S. C., Li, C. H., Li, J., Li, Y., Li, Y. B., Gioi, L. Li, Libby, J., Lieret, K., Liventsev, D., Martini, A., Masuda, M., Matsuda, T., Matvienko, D., Maurya, S. K., Merola, M., Metzner, F., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Nakao, M., Narwal, D., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nisar, N. K., Nishida, S., Ogawa, K., Ogawa, S., Ono, H., Onuki, Y., Oskin, P., Pakhlov, P., Pakhlova, G., Pang, T., Pardi, S., Park, S. -H., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Pestotnik, R., Piilonen, L. E., Podobnik, T., Popov, V., Prencipe, E., Prim, M. T., Purohit, M. V., Röhrken, M., Rostomyan, A., Rout, N., Russo, G., Sahoo, D., Sandilya, S., Sangal, A., Santelj, L., Sanuki, T., Savinov, V., Schnell, G., Schwanda, C., Seino, Y., Senyo, K., Sevior, M. E., Shapkin, M., Sharma, C., Shebalin, V., Shen, C. P., Shiu, J. -G., Singh, J. B., Sokolov, A., Solovieva, E., Starič, M., Stottler, Z. S., Strube, J. F., Sumihama, M., Sumiyoshi, T., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Uchida, M., Uglov, T., Unno, Y., Uno, S., Urquijo, P., Usov, Y., Vahsen, S. E., Van Tonder, R., Varner, G., Varvell, K. E., Vinokurova, A., Vossen, A., Waheed, E., Wang, C. H., Wang, M. -Z., Watanuki, S., Won, E., Yabsley, B. D., Yan, W., Yang, S. B., Ye, H., Yelton, J., Yin, J. H., Yuan, C. Z., Yusa, Y., Zhai, Y., Zhang, Z. P., Zhilich, V., Zhukova, V.

论文摘要

我们首次使用$ b^0 \ rightArrow k_s^0 k_s^0γ$的首次搜索使用$ 772 \ times 10^6 $ $ $ b \ bar {b} $ pairs在Kekb akkb yemmetric-enerergy $ e^+ e^+ clider中收集的完整数据样本。我们没有在$ k_s^0 $ - pair不变质量范围1 Gev/$ c^2 <m_ {k_s^0 k_s^0} <$ 3 gev/$ c^2 $中观察到任何具有统计学意义的信号产量,并将以下上限设置为90%的置信度:$ \ \ \ \ \ \ \ \ \ \ k^0 \ k_s^0 \ k_ k^0 \ k k^0 \ k k^0. 5.8 \ times10^{ - 7} $,$ \ MATHCAL {b}(b^0 \ tof_2γ)\ times \ times \ Mathcal {b}(f_2(f_2(1270)\ to K_S^0 K_S^0 K_S^0) f_2^{\ prime}γ)\ times \ times \ mathcal {b}(f_2^{\ prime}(1525)\ to k_s^0 k_s^0)<2.1 \ 2.1 \ times10^{ - 7} $。此外,在$ b^0 \ rightArrow k_s^0 k_s^0γ$分支分数$ m_s {k_s^0 k_s^0} $的范围内也设置了90%的上限上限。

We report the first search for the penguin-dominated process $B^0 \rightarrow K_S^0 K_S^0 γ$ using the full data sample of $772\times 10^6$ $B\bar{B}$ pairs collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. We do not observe any statistically significant signal yield in the $K_S^0$-pair invariant mass range 1 GeV/$c^2 < M_{K_S^0 K_S^0} < $ 3 GeV/$c^2$, and set the following upper limits at 90% confidence level: $\mathcal{B}(B^0 \to K_S^0 K_S^0 γ) < 5.8\times10^{-7}$, $\mathcal{B}(B^0 \to f_2 γ)\times \mathcal{B}(f_2 (1270) \to K_S^0 K_S^0 ) < 3.1\times10^{-7}$, and $\mathcal{B}(B^0 \to f_2^{\prime} γ)\times \mathcal{B}(f_2^{\prime} (1525) \to K_S^0 K_S^0 ) < 2.1\times10^{-7}$. Further, 90% confidence upper limits have also been set in the range of [0.7-2.9]$\times10^{-7}$ on the $B^0 \rightarrow K_S^0 K_S^0 γ$ branching fraction in bins of $M_{K_S^0 K_S^0}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源