论文标题

积极学习变异性密集型系统的基准

A Benchmark for Active Learning of Variability-Intensive Systems

论文作者

Tavassoli, Shaghayegh, Damasceno, Carlos Diego Nascimento, Mousavi, Mohammad Reza, Khosravi, Ramtin

论文摘要

行为模型是软件产品线(SPL)行为分析的关键推动因素,包括测试和模型检查。当家庭行为模型不存在或过时时,积极的模型学习就会挽救。主动模型学习的一个关键挑战是有效地检测共同点和可变性,并将它们结合到简洁的家庭模型中。基准及其相关指标将在塑造该有希望的领域的研究议程中发挥关键作用,并为比较和识别即将到来的技术中的相对优势和劣势提供了有效的手段。在这一挑战中,我们寻求基准来评估软件产品线环境中主动模型学习方法的效率(例如,学习时间和记忆足迹)和有效性(例如,家庭模型的简洁性和准确性)。这些基准集必须包含至少一个SPL的结构和行为变异模型。基准中的每个SPL都必须包含有关基本主动学习$ l^{*} $算法需要多一轮模型学习的产品。另外,也欢迎支持人工基准模型合成的工具。

Behavioral models are the key enablers for behavioral analysis of Software Product Lines (SPL), including testing and model checking. Active model learning comes to the rescue when family behavioral models are non-existent or outdated. A key challenge on active model learning is to detect commonalities and variability efficiently and combine them into concise family models. Benchmarks and their associated metrics will play a key role in shaping the research agenda in this promising field and provide an effective means for comparing and identifying relative strengths and weaknesses in the forthcoming techniques. In this challenge, we seek benchmarks to evaluate the efficiency (e.g., learning time and memory footprint) and effectiveness (e.g., conciseness and accuracy of family models) of active model learning methods in the software product line context. These benchmark sets must contain the structural and behavioral variability models of at least one SPL. Each SPL in a benchmark must contain products that requires more than one round of model learning with respect to the basic active learning $L^{*}$ algorithm. Alternatively, tools supporting the synthesis of artificial benchmark models are also welcome.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源