论文标题
通过化学场相互作用的活性胶体的动力稳态
Dynamical steady-states of active colloids interacting via chemical fields
论文作者
论文摘要
我们通过布朗动力学模拟研究了化学活性自动胶体胶体单层的动力学稳态,这是填充分数和自我推测速度的函数。我们专注于化学领域引起竞争有吸引力的位置和排斥定向相互作用的情况。分析簇大小和局部密度的分布以及六角阶参数,我们区分了四个不同的动态状态,包括折叠,活动气体,动力学聚类和运动性相位分离状态。远程化学场诱导的相互作用将运动诱导的相分离(MIP)的发作转移到中间自我刺激速度下的非常低的填充部分。我们还发现,最大簇中的颗粒的比例是一个合适的顺序参数,该参数表征了从活性气体或动态聚类稳态到填料分数增加后分离状态的动力学相变。从中间的自我传播速度从活动气体到类似MIPS状态的订单参数不断变化,而在较大的活动中,该系统在系统经历从动力学聚类状态到类似MIPS的状态的过渡。
We study the dynamical steady-states of a monolayer of chemically active self-phoretic colloids as a function of packing fraction and self-propulsion speed by means of Brownian dynamics simulations. We focus on the case that a chemical field induces competing attractive positional and repulsive orientational interactions. Analyzing the distribution of cluster size and local density as well as the hexatic order parameter, we distinguish four distinct dynamical states which include collapsed, active gas, dynamical clustering, and motility-induced phase-separated states. The long-range chemical field-induced interactions shift the onset of motility-induced phase separation (MIPS) to very low packing fractions at intermediate self-propulsion speeds. We also find that the fraction of particles in the largest clusters is a suitable order parameter characterizing the dynamical phase transitions from an active gas or dynamical clustering steady-state to a phase-separated state upon increase of the packing fraction. The order parameter changes discontinuously when going from an active gas to a MIPS-like state at intermediate self-propulsion speeds, whereas it changes continuously at larger activities where the system undergoes a transition from a dynamical clustering state to MIPS-like state.