论文标题

使用背景匹配的自适应背景垫

Adaptive Background Matting Using Background Matching

论文作者

Liu, Jinlin

论文摘要

由于难以解决垫子问题,许多方法都会使用某些帮助来获取高质量的α哑光。绿屏垫子方法依赖物理设备。基于TRIMAP的方法将手动交互作为外部输入。基于背景的方法需要预先捕获的静态背景。这些方法的灵活性不足,足以广泛使用。无质timap的方法是灵活的,但在复杂的视频应用中不稳定。为了在实际应用中保持稳定且灵活,我们提出了一种自适应背景垫子方法。用户首先自由捕获他们的视频,移动相机。然后,用户随后捕获了背景视频,大致涵盖了先前的捕获区域。我们使用动态背景视频,而不是静态背景以进行准确的垫子。提出的方法在任何场景中都方便使用,因为静态相机和背景不再是限制。为了实现此目标,我们使用背景匹配网络从动态背景中逐一找到最匹配的背景框架。然后,使用强大的语义估计网络来估计粗α哑光。最后,我们根据粗α哑光裁剪和缩小目标区域,并估算最终精确的α哑光。在实验中,所提出的方法能够与最新的套件方法相当地执行。

Due to the difficulty of solving the matting problem, lots of methods use some kinds of assistance to acquire high quality alpha matte. Green screen matting methods rely on physical equipment. Trimap-based methods take manual interactions as external input. Background-based methods require a pre-captured, static background. The methods are not flexible and convenient enough to use widely. Trimap-free methods are flexible but not stable in complicated video applications. To be stable and flexible in real applications, we propose an adaptive background matting method. The user first captures their videos freely, moving the cameras. Then the user captures the background video afterwards, roughly covering the previous captured regions. We use dynamic background video instead of static background for accurate matting. The proposed method is convenient to use in any scenes as the static camera and background is no more the limitation. To achieve this goal, we use background matching network to find the best-matched background frame by frame from dynamic backgrounds. Then, robust semantic estimation network is used to estimate the coarse alpha matte. Finally, we crop and zoom the target region according to the coarse alpha matte, and estimate the final accurate alpha matte. In experiments, the proposed method is able to perform comparably against the state-of-the-art matting methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源