论文标题
TextConvonet:基于卷积神经网络的架构,用于文本分类
TextConvoNet:A Convolutional Neural Network based Architecture for Text Classification
论文作者
论文摘要
近年来,基于深度学习的模型显着改善了自然语言处理(NLP)任务。具体而言,最初用于计算机视觉的卷积神经网络(CNN)在各种NLP问题中显示出出色的文本数据性能。大多数现有基于CNN的模型都使用1维卷动滤波器N-Gram检测器),其中每个过滤器专门研究特定输入单词嵌入的N-grams功能。输入单词嵌入(也称为句子矩阵)被视为矩阵,其中每一行是一个词向量。因此,它允许模型应用一维卷积,并且仅从句子矩阵中提取基于N-Gram的特征。这些功能可以称为句子内n-gram特征。在我们的知识范围内,所有现有的CNN模型均基于上述概念。在本文中,我们提出了一个基于CNN的架构TextConvonet,该体系结构不仅提取句子内n-gram功能,而且还捕获了输入文本数据中的句子间n-gram特征。它使用替代方法来输入矩阵表示,并在输入上应用二维多尺度卷积操作。为了评估TextConvonet的性能,我们对五个文本分类数据集进行了一项实验研究。通过使用各种性能指标评估结果。实验结果表明,提出的TextConvonet优于最先进的机器学习和用于文本分类目的的深度学习模型。
In recent years, deep learning-based models have significantly improved the Natural Language Processing (NLP) tasks. Specifically, the Convolutional Neural Network (CNN), initially used for computer vision, has shown remarkable performance for text data in various NLP problems. Most of the existing CNN-based models use 1-dimensional convolving filters n-gram detectors), where each filter specialises in extracting n-grams features of a particular input word embedding. The input word embeddings, also called sentence matrix, is treated as a matrix where each row is a word vector. Thus, it allows the model to apply one-dimensional convolution and only extract n-gram based features from a sentence matrix. These features can be termed as intra-sentence n-gram features. To the extent of our knowledge, all the existing CNN models are based on the aforementioned concept. In this paper, we present a CNN-based architecture TextConvoNet that not only extracts the intra-sentence n-gram features but also captures the inter-sentence n-gram features in input text data. It uses an alternative approach for input matrix representation and applies a two-dimensional multi-scale convolutional operation on the input. To evaluate the performance of TextConvoNet, we perform an experimental study on five text classification datasets. The results are evaluated by using various performance metrics. The experimental results show that the presented TextConvoNet outperforms state-of-the-art machine learning and deep learning models for text classification purposes.