论文标题
Ricci流量和Gromov几乎是平坦的歧管
Ricci Flow and Gromov Almost Flat Manifolds
论文作者
论文摘要
我们利用Ricci流来得出有关Gromov几乎平坦的歧管的新定理,该定理概括并增强了著名的Gromov-Ruh定理。在我们的定理中,条件$ diam^2 | k | Gromov--ruh定理中的\leqε_n$被基本弱的条件$ \ | rm \ | _ {n/2} $ c_s^2 \ leq \ lepsilon_n $所取代。
We employ the Ricci flow to derive a new theorem about Gromov almost flat manifolds, which generalizes and strengthens the celebrated Gromov--Ruh Theorem. In our theorem, the condition $diam^2 |K| \leq ε_n$ in the Gromov--Ruh Theorem is replaced by the substantially weaker condition $\|Rm\|_{n/2}$ $ C_S^2 \leq \varepsilon_n$.