论文标题

特征模型理解的经验目光跟踪研究

An Empirical Eye-Tracking Study of Feature Model Comprehension

论文作者

Sepasi, Elmira Rezaei, Balouchi, Kambiz Nezami, Mercier, Julien, Lopez-Herrejon, Roberto Erick

论文摘要

软件产品线(SPL)是相关软件系统的家族,它们由每个系统提供的一组功能来区分。特征模型是对SPL的变异性建模的事实上的标准,因为它们描述了构成SPL的特征,其关系以及所有功能的组合。由于其关键作用,功能模型是SPL工程中许多任务的核心。我们的工作介绍了一项有关特征模型的理解,以检查配置的有效性。我们的研究探讨了特征数量与跨树限制数量之间的关系,以及参与者对有效性检查问题的答案的准确性,并使用眼注射来分析解释固定信息的难度以及特征模型模型刺激的不同部分的认知处理量。我们发现答案精度与特征模型的特征数量或跨树约束数量无关,但是这两个因素确实显示出准确性的相互作用。此外,我们的研究确定了在固定数量和固定时间的跨树限制的特征模型中的差异,但是在没有跨树约束的情况下,这些模型没有差异。

Software Product Lines (SPLs) are families of related software systems which are distinguished by the set of features each system provides. Feature Models are the de facto standard for modelling the variability of SPLs because they describe the features, their relations, and all the combinations of features that constitute a SPL. Because of their key role, feature models are at the core of many tasks in SPL engineering. Our work presents an empirical study on the comprehension of feature models for the task of checking the validity of configurations. Our study explored the relation between the number of features and the number of cross-tree constraints with the accuracy of participants' answers to validity checking questions, and used eye fixations for analyzing the difficulty in interpreting fixated information and the amount of cognitive processing of the different parts of the feature model stimuli. We found that answer accuracy does not relate individually to the number of features or to the number of cross-tree constrains of a feature model, but both factors do show an interaction on accuracy. Additionally, our study identified differences in feature models with cross-tree constraints in both number of fixations and fixation time, but no differences in those models without cross-tree constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源