论文标题
路径积分框架用于表征和控制非平稳环境在量子探针上诱导的破坏性
Path integral framework for characterizing and controlling decoherence induced by non-stationary environments on a quantum probe
论文作者
论文摘要
量子信息的可靠处理是实现量子技术部署的一个里程碑。不受控制的,不平衡的破裂来源需要详细表征,以设计对量子设备的控制以减轻量子信息的损失。然而,由于其非平稳性质通常可以产生复杂的高阶相关性,因此对这种环境的量子感应仍然是一个挑战。在这里,我们引入了一个路径积分框架,以通过量子探针来表征非平稳的环境波动。我们发现了诱导纯dephasing的非平稳,广义的高斯过程的腐烂衰减的解决方案。基于非平稳噪声本征码以合适的基础表达时,这种dephasing是由广义噪声频谱密度的重叠和取决于控制场的滤波函数的重叠来定义的。因此,该结果将有效性扩展到了平衡环境,这是相似的一般表达,用于将开放量子系统与固定噪声结合在一起。我们显示了局部噪声的广泛噪声子类的物理见解,从某种意义上说,噪声相关函数基于波动噪声路径的衍生物的约束包含内存。讨论了光谱和非马克维亚特性,以及实施框架的实现,以处理范式不平衡的环境,例如由于淬火和脉冲噪声。我们表明,我们的结果提供了用于探测光谱和时间相关属性的工具,以及减轻非平衡性 - 非平衡 - 环境环境的破坏效应。
Reliable processing of quantum information is a milestone to achieve for the deployment of quantum technologies. Uncontrolled, out-of-equilibrium sources of decoherence need to be characterized in detail for designing the control of quantum devices to mitigate the loss of quantum information. However, quantum sensing of such environments is still a challenge due to their non-stationary nature that in general can generate complex high-order correlations. We here introduce a path integral framework to characterize non-stationary environmental fluctuations by a quantum probe. We found the solution for the decoherence decay of non-stationary, generalized Gaussian processes that induce pure dephasing. This dephasing when expressed in a suitable basis, based on the non-stationary noise eigenmodes, is defined by the overlap of a generalized noise spectral density and a filter function that depends on the control fields. This result thus extends the validity to out-of-equilibrium environments, of the similar general expression for the dephasing of open quantum systems coupled to stationary noises. We show physical insights for a broad subclass of non-stationary noises that are local-in-time, in the sense that the noise correlation functions contain memory based on constraints of the derivatives of the fluctuating noise paths. Spectral and non-Markovian properties are discussed together with implementations of the framework to treat paradigmatic environments that are out-of-equilibrium, e.g. due to a quench and a pulsed noise. We show that our results provide tools for probing the spectral and time-correlation properties, and for mitigating decoherence effects of out-of-equilibrium -- non-stationary -- environments.