论文标题
流体动力学,自旋电流和扭转
Hydrodynamics, spin currents and torsion
论文作者
论文摘要
我们为具有旋转电流的系统的流体描述构建了规范的本构关系,在没有奇偶校验破坏或时间逆转破裂项的情况下,在任意数量的维度上有效。我们的研究涵盖了静液压分区函数,熵电流,久保公式,保形不变性和电荷的效果。在计算的某些阶段,我们打开了背景扭转张量,该张量自然伴随着自旋电流。
We construct the canonical constitutive relations for a fluid description of a system with a spin current, valid in an arbitrary number of dimensions in the absence of parity breaking or time reversal breaking terms. Our study encompasses the hydrostatic partition function, the entropy current, Kubo formula, conformal invariance, and the effect of charge. At some stages of the computation we turn on a background torsion tensor which naturally couples to the spin current.