论文标题
拓扑绝缘子表面的设计师梅隆晶格
Designer Meron Lattice on the Surface of a Topological Insulator
论文作者
论文摘要
我们提出了一条有希望的途径,可以通过应用超晶格电位来实现3D拓扑绝缘子表面上的自发磁性秩。超晶格电势会产生可调的范霍夫奇异性,当与强旋转轨道耦合和库仑排斥相结合时,会产生拓扑梅隆晶格旋转质地。该设计师梅隆晶格的周期性可以通过改变超晶格电位的周期性来调节。我们使用金茨堡 - 兰道理论表征了磁性顺序,并表明磁过渡温度达到了实验可访问的值。我们的工作引入了一个新的方向,通过在超晶格电位上进行工程相互作用的迪拉克电子来实现异国情调的量子,并在Spintronics上采用了有希望的应用。
We present a promising route to realize spontaneous magnetic order on the surface of a 3D topological insulator by applying a superlattice potential. The superlattice potential creates tunable van Hove singularities, which, when combined with strong spin-orbit coupling and Coulomb repulsion give rise to a topological meron lattice spin texture. The periodicity of this designer meron lattice can be tuned by varying the periodicity of the superlattice potential. We characterize the magnetic order using Ginzburg-Landau theory and show that the magnetic transition temperature reaches experimentally accessible values. Our work introduces a new direction to realize exotic quantum order by engineering interacting Dirac electrons in a superlattice potential, with promising applications to spintronics.