论文标题

量化渐近分析以外的Grover加速

Quantifying Grover speed-ups beyond asymptotic analysis

论文作者

Cade, Chris, Folkertsma, Marten, Niesen, Ido, Weggemans, Jordi

论文摘要

通常通过渐近,最坏情况分析研究量子算法的运行时间。尽管有用,但这种比较通常会很短:对于具有较大最差的运行时间的算法而言,最终在实际兴趣的实例上表现良好并不少见。为了解决这个问题,有必要求助于更经验的运行时间分析,对于足够小的输入尺寸,可以在量子设备或其模拟上进行。对于较大的输入尺寸,需要替代方法。 在本文中,我们考虑了一种将经典仿真与包括所有常数在内的详细复杂性界限相结合的方法。我们通过运行子列表的经典版本来模拟量子算法,同时收集有关量子例程的运行时间,如果它运行的情况将是什么。为了对非常大的输入大小进行准确,有效地执行此操作,我们描述了一个估计程序,并证明它在量子算法的真实预期复杂性上获得了上限。 我们将方法应用于一些简单的经典启发式算法的量子加速,以求解经过良好研究的最大$ K $ -SAT优化问题。这需要在两个重要的量子子列表的预期和最差案例复杂性上进行严格的界限(包括所有常数):格罗弗搜索具有未知数的标记项目,以及最大量子。这些改善了现有结果,并可能引起广泛的兴趣。 除其他结果外,我们发现,尽管存在理论上的每步加速,但我们研究的经典启发式算法并未提供显着的量子加速。这表明,诸如我们在本文中实施的经验分析已经产生的见解超出了仅渐近分析可以看出的见解。

Run-times of quantum algorithms are often studied via an asymptotic, worst-case analysis. Whilst useful, such a comparison can often fall short: it is not uncommon for algorithms with a large worst-case run-time to end up performing well on instances of practical interest. To remedy this it is necessary to resort to run-time analyses of a more empirical nature, which for sufficiently small input sizes can be performed on a quantum device or a simulation thereof. For larger input sizes, alternative approaches are required. In this paper we consider an approach that combines classical emulation with detailed complexity bounds that include all constants. We simulate quantum algorithms by running classical versions of the sub-routines, whilst simultaneously collecting information about what the run-time of the quantum routine would have been if it were run instead. To do this accurately and efficiently for very large input sizes, we describe an estimation procedure and prove that it obtains upper bounds on the true expected complexity of the quantum algorithms. We apply our method to some simple quantum speedups of classical heuristic algorithms for solving the well-studied MAX-$k$-SAT optimization problem. This requires rigorous bounds (including all constants) on the expected- and worst-case complexities of two important quantum sub-routines: Grover search with an unknown number of marked items, and quantum maximum-finding. These improve upon existing results and might be of broader interest. Amongst other results, we found that the classical heuristic algorithms we studied did not offer significant quantum speedups despite the existence of a theoretical per-step speedup. This suggests that an empirical analysis such as the one we implement in this paper already yields insights beyond those that can be seen by an asymptotic analysis alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源