论文标题

部分可观测时空混沌系统的无模型预测

Exceptional moduli spaces for exceptional $\mathcal{N}=3$ theories

论文作者

Kaidi, Justin, Martone, Mario, Zafrir, Gabi

论文摘要

总的来说,预计4D $ \ Mathcal {n} = 3 $理论的模量空间是$ \ Mathbb {c}^{3r}/γ$的形式,$ r $,等级和$γ$ crystallographic complectection Reflection Reflection Group(CCRG)。与Lie代数一样,CCRG的空间由几个无限家庭组成,以及一些例外。迄今为止,已经确定了由特殊CCRG(不包括Weyl组)标记的Moduli空间的4D $ \ MATHCAL {N} = 3 $理论。在这项工作中,我们表明4D $ \ MATHCAL {n} = 3 $理论在\ cite {garcia-etxebarria:2016erx}中提出的理论是通过类型 - $ \ mathfrak {e} $ 6D(2,0)的非几何标的构建的,几乎所有此类excripitial Moduli Space构建。此外,我们引入了这种结构的扩展,以允许外部自动形态对称性进行曲折和商。这给出了4D $ \ MATHCAL {N} = 3 $理论的新示例,而不是简单的S折。

It is expected on general grounds that the moduli space of 4d $\mathcal{N}=3$ theories is of the form $\mathbb{C}^{3r}/Γ$, with $r$ the rank and $Γ$ a crystallographic complex reflection group (CCRG). As in the case of Lie algebras, the space of CCRGs consists of several infinite families, together with some exceptionals. To date, no 4d $\mathcal{N}=3$ theory with moduli space labelled by an exceptional CCRG (excluding Weyl groups) has been identified. In this work we show that the 4d $\mathcal{N}=3$ theories proposed in \cite{Garcia-Etxebarria:2016erx}, constructed via non-geometric quotients of type-$\mathfrak{e}$ 6d (2,0) theories, realize nearly all such exceptional moduli spaces. In addition, we introduce an extension of this construction to allow for twists and quotients by outer automorphism symmetries. This gives new examples of 4d $\mathcal{N}=3$ theories going beyond simple S-folds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源