论文标题

学习盲目图像超分辨率的降解分布

Learning the Degradation Distribution for Blind Image Super-Resolution

论文作者

Luo, Zhengxiong, Huang, Yan, Li, Shang, Wang, Liang, Tan, Tieniu

论文摘要

合成高分辨率(HR)\&低分辨率(LR)对被广泛用于现有的超分辨率(SR)方法。为了避免合成图像和测试图像之间的域间隙,大多数以前的方法试图通过确定性模型自适应地学习合成(降级)过程。但是,实际场景中的某些降解是随机的,不能由图像的内容确定。这些确定性模型可能无法建模降解的随机因素和与内容无关的部分,这将限制以下SR模型的性能。在本文中,我们提出了一个概率降解模型(PDM),该模型研究降解$ \ m athbf {d} $作为一个随机变量,并通过从先验随机变量$ \ mathbf {z} $ to $ \ mathbf {d} $中对映射进行建模来学习其分布。与以前的确定性降解模型相比,PDM可以建模更多不同的降解并生成HR-LR对,从而可以更好地覆盖测试图像的各种降解,从而防止SR模型过度拟合到特定的模型。广泛的实验表明,我们的降解模型可以帮助SR模型在不同数据集上实现更好的性能。源代码通过\ url {[email protected]:greatlog/undaledsr.git}发布。

Synthetic high-resolution (HR) \& low-resolution (LR) pairs are widely used in existing super-resolution (SR) methods. To avoid the domain gap between synthetic and test images, most previous methods try to adaptively learn the synthesizing (degrading) process via a deterministic model. However, some degradations in real scenarios are stochastic and cannot be determined by the content of the image. These deterministic models may fail to model the random factors and content-independent parts of degradations, which will limit the performance of the following SR models. In this paper, we propose a probabilistic degradation model (PDM), which studies the degradation $\mathbf{D}$ as a random variable, and learns its distribution by modeling the mapping from a priori random variable $\mathbf{z}$ to $\mathbf{D}$. Compared with previous deterministic degradation models, PDM could model more diverse degradations and generate HR-LR pairs that may better cover the various degradations of test images, and thus prevent the SR model from over-fitting to specific ones. Extensive experiments have demonstrated that our degradation model can help the SR model achieve better performance on different datasets. The source codes are released at \url{[email protected]:greatlog/UnpairedSR.git}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源